

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9086277/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Single-atom catalysis enables long-life, high-energy lithium-sulfur batteries. Nano Research, 2020, 13, 1856-1866.	10.4	257
2	Synergistic electrocatalysis of polysulfides by a nanostructured VS ₄ -carbon nanofiber functional separator for high-performance lithium–sulfur batteries. Journal of Materials Chemistry A, 2019, 7, 16812-16820.	10.3	105
3	Spider Web-Inspired Graphene Skeleton-Based High Thermal Conductivity Phase Change Nanocomposites for Battery Thermal Management. Nano-Micro Letters, 2021, 13, 180.	27.0	92
4	Thermoâ€Optically Designed Scalable Photonic Films with High Thermal Conductivity for Subambient and Aboveâ€Ambient Radiative Cooling. Advanced Functional Materials, 2022, 32, 2109542.	14.9	91
5	Improving stability of MXenes. Nano Research, 2022, 15, 6551-6567.	10.4	87
6	Dielectric polymer based electrolytes for high-performance all-solid-state lithium metal batteries. Journal of Energy Chemistry, 2022, 69, 194-204.	12.9	82
7	Recent advances in anode materials for potassium-ion batteries: A review. Nano Research, 2021, 14, 4442-4470.	10.4	76
8	Rapid, high-efficient and scalable exfoliation of high-quality boron nitride nanosheets and their application in lithium-sulfur batteries. Nano Research, 2021, 14, 2424.	10.4	66
9	Efficient polysulfide barrier of a graphene aerogel–carbon nanofibers–Ni network for high-energy-density lithium–sulfur batteries with ultrahigh sulfur content. Journal of Materials Chemistry A, 2018, 6, 20926-20938.	10.3	63
10	Flexible wire-shaped lithium-sulfur batteries with fibrous cathodes assembled via capillary action. Nano Energy, 2017, 33, 325-333.	16.0	62
11	Selenium-rich nickel cobalt bimetallic selenides with core–shell architecture enable superior hybrid energy storage devices. Nanoscale, 2020, 12, 4040-4050.	5.6	61
12	Patterning Islandlike MnO ₂ Arrays by Breath-Figure Templates for Flexible Transparent Supercapacitors. ACS Applied Materials & Interfaces, 2018, 10, 27001-27008.	8.0	60
13	Duplex trapping and charge transfer with polysulfides by a diketopyrrolopyrrole-based organic framework for high-performance lithium–sulfur batteries. Journal of Materials Chemistry A, 2019, 7, 18100-18108.	10.3	57
14	Ultrahigh rate capability of 1D/2D polyaniline/titanium carbide (MXene) nanohybrid for advanced asymmetric supercapacitors. Nano Research, 2022, 15, 285-295.	10.4	50
15	A single wire as all-inclusive fully functional supercapacitor. Nano Energy, 2017, 32, 201-208.	16.0	48
16	Vanadium oxide nanorods embed in porous graphene aerogel as high-efficiency polysulfide-trapping-conversion mediator for high performance lithium-sulfur batteries. Chemical Engineering Journal, 2020, 393, 124570.	12.7	47
17	Dendriteâ€free lithium and sodium metal anodes with deep plating/stripping properties for lithium and sodium batteries. , 2021, 3, 153-166.		47
18	NiO nanowall-assisted growth of thick carbon nanofiber layers on metal wires for fiber supercapacitors. Chemical Communications, 2016, 52, 2721-2724.	4.1	46

Qi Kang

#	Article	IF	CITATIONS
19	High rate Li-ion storage properties of MOF-carbonized derivatives coated on MnO nanowires. Materials Chemistry Frontiers, 2017, 1, 1975-1981.	5.9	39
20	Synergistic effect of graphene and polypyrrole to enhance the SnO ₂ anode performance in lithium-ion batteries. RSC Advances, 2016, 6, 9402-9410.	3.6	38
21	Amorphous vanadyl phosphate/graphene composites for high performance supercapacitor electrode. Journal of Power Sources, 2017, 344, 185-194.	7.8	38
22	A high-performance asymmetric supercapacitor based on vanadyl phosphate/carbon nanocomposites and polypyrrole-derived carbon nanowires. Nanoscale, 2018, 10, 3709-3719.	5.6	36
23	Construction of Moistureâ€Stable Lithium Diffusionâ€Controlling Layer toward High Performance Dendriteâ€Free Lithium Anode. Advanced Functional Materials, 2022, 32, 2110468.	14.9	32
24	Carbon Nanotube-Connected Yolk–Shell Carbon Nanopolyhedras with Cobalt and Nitrogen Doping as Sulfur Immobilizers for High-Performance Lithium–Sulfur Batteries. ACS Applied Energy Materials, 2018, 1, 6487-6496.	5.1	29
25	Industrially weavable metal/cotton yarn air electrodes for highly flexible and stable wire-shaped Li–O ₂ batteries. Journal of Materials Chemistry A, 2017, 5, 3638-3644.	10.3	28
26	Hydrogen-assisted scalable preparation of ultrathin Pt shells onto surfactant-free and uniform Pd nanoparticles for highly efficient oxygen reduction reaction in practical fuel cells. Nano Research, 2022, 15, 1892-1900.	10.4	27
27	Nitrogen-doped hollow porous carbon nanotubes for high-sulfur loading Li–S batteries. Electrochimica Acta, 2019, 324, 134849.	5.2	26
28	Towards free-standing MoS ₂ nanosheet electrocatalysts supported and enhanced by N-doped CNT–graphene foam for hydrogen evolution reaction. RSC Advances, 2015, 5, 55396-55400.	3.6	23
29	Negative differential resistance and hysteresis in graphene-based organic light-emitting devices. Journal of Materials Chemistry C, 2018, 6, 1926-1932.	5.5	18
30	Interface engineering of Zn meal anodes using electrochemically inert Al2O3 protective nanocoatings. Nano Research, 2022, 15, 7227-7233.	10.4	17
31	Sandwich-Like Holey Graphene/PANI/Graphene Nanohybrid for Ultrahigh-Rate Supercapacitor. ACS Applied Energy Materials, 0, , .	5.1	14
32	Iron oxide encapsulated in nitrogen-rich carbon enabling high-performance lithium-ion capacitor. Science China Materials, 2020, 63, 2289-2302.	6.3	13
33	Self-cleaning of superhydrophobic nanostructured surfaces at low humidity enhanced by vertical electric field. Nano Research, 2022, 15, 4732-4738.	10.4	11
34	Electronic and Potential Synergistic Effects of Surface-Doped P–O Species on Uniform Pd Nanospheres: Breaking the Linear Scaling Relationship toward Electrochemical Oxygen Reduction. ACS Applied Materials & Interfaces, 2022, 14, 14146-14156.	8.0	8