M Serdar Onses

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/908622/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Antifouling superhydrophobic surfaces with bactericidal and SERS activity. Chemical Engineering Journal, 2022, 431, 133445.	6.6	72
2	Effects of carbon nanomaterials and MXene addition on the performance of nitrogen doped MnO2 based supercapacitors. Ceramics International, 2022, 48, 7253-7260.	2.3	40
3	Microwave-assisted fabrication of high-performance supercapacitors based on electrodes composed of cobalt oxide decorated with reduced graphene oxide and carbon dots. Journal of Energy Storage, 2022, 49, 104103.	3.9	25
4	Nanostructures for the Prevention, Diagnosis, and Treatment of SARS-CoV-2: A Review. ACS Applied Nano Materials, 2022, 5, 6029-6054.	2.4	12
5	Transferrable SERS Barcodes. Advanced Materials Interfaces, 2022, 9, .	1.9	5
6	Superhydrophobic coatings for food packaging applications: A review. Food Packaging and Shelf Life, 2022, 32, 100823.	3.3	57
7	Organic Lightâ€Emitting Physically Unclonable Functions. Advanced Functional Materials, 2022, 32, .	7.8	41
8	Natural Wax-Stabilized Perovskite Nanocrystals as Pen-on-Paper Inks and Doughs. ACS Applied Nano Materials, 2022, 5, 6201-6212.	2.4	5
9	Highly compressible binder-free sponge supercapacitor electrode based on flower-like NiO/MnO2/CNT. Journal of Alloys and Compounds, 2022, 913, 165053.	2.8	14
10	Unclonable Features via Electrospraying of Bulk Polymers. ACS Applied Polymer Materials, 2022, 4, 5952-5964.	2.0	14
11	One-step Green Fabrication of Antimicrobial Surfaces via In Situ Growth of Copper Oxide Nanoparticles. ACS Omega, 2022, 7, 26504-26513.	1.6	7
12	Sponge-derived natural bioactive glass microspheres with self-assembled surface channel arrays opening into a hollow core for bone tissue and controlled drug release applications. Chemical Engineering Journal, 2021, 407, 126667.	6.6	16
13	SERS-active linear barcodes by microfluidic-assisted patterning. Journal of Colloid and Interface Science, 2021, 584, 11-18.	5.0	22
14	Fabrication of superhydrophobic Ag@ZnO@Bi2WO6 membrane disc as flexible and photocatalytic active reusable SERS substrate. Journal of Molecular Structure, 2021, 1223, 129258.	1.8	17
15	Transferring the structure of paper for mechanically durable superhydrophobic surfaces. Surface and Coatings Technology, 2021, 405, 126543.	2.2	36
16	Physically Unclonable Surfaces via Dewetting of Polymer Thin Films. ACS Applied Materials & Interfaces, 2021, 13, 11247-11259.	4.0	46
17	Rapid fabrication of high-performance transparent electrodes by electrospinning of reactive silver ink containing nanofibers. Journal of Industrial and Engineering Chemistry, 2021, 95, 109-119.	2.9	16
18	Waxing the soot: Practical fabrication of all-organic superhydrophobic coatings from candle soot and carnauba wax. Progress in Organic Coatings, 2021, 153, 106169.	1.9	22

#	Article	IF	CITATIONS
19	Ink-jet printing of particle-free silver inks on fabrics with a superhydrophobic protection layer for fabrication of robust electrochemical sensors. Microchemical Journal, 2021, 164, 106038.	2.3	16
20	Production of natural chitin film from pupal shell of moth: Fabrication of plasmonic surfaces for SERS-based sensing applications. Carbohydrate Polymers, 2021, 262, 117909.	5.1	14
21	Robust superhydrophobic fabrics by infusing structured polydimethylsiloxane films. Journal of Applied Polymer Science, 2021, 138, 51358.	1.3	7
22	Cover Image, Volume 138, Issue 41. Journal of Applied Polymer Science, 2021, 138, 51459.	1.3	1
23	Blood repellent superhydrophobic surfaces constructed from nanoparticle-free and biocompatible materials. Colloids and Surfaces B: Biointerfaces, 2021, 205, 111864.	2.5	35
24	From bio-waste to biomaterials: The eggshells of Chinese oak silkworm as templates for SERS-active surfaces. Chemical Engineering Journal, 2021, 426, 131874.	6.6	5
25	Antibacterial, Antiviral, and Self-Cleaning Mats with Sensing Capabilities Based on Electrospun Nanofibers Decorated with ZnO Nanorods and Ag Nanoparticles for Protective Clothing Applications. ACS Applied Materials & Interfaces, 2021, 13, 5678-5690.	4.0	145
26	Mesoporous One-Component Gold Microshells as 3D SERS Substrates. Biosensors, 2021, 11, 380.	2.3	5
27	Raman spectroscopy: A novel experimental approach to evaluating cisplatin induced tissue damage. Talanta, 2020, 207, 120343.	2.9	10
28	Photocatalytic green fabrication of Au nanoparticles on ZnO nanorods modified membrane as flexible and photocatalytic active reusable SERS substrates. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 585, 124088.	2.3	41
29	Synthesis of Ag and TiO2 modified polycaprolactone electrospun nanofibers (PCL/TiO2-Ag NFs) as a multifunctional material for SERS, photocatalysis and antibacterial applications. Ecotoxicology and Environmental Safety, 2020, 188, 109856.	2.9	63
30	Multiplexed patterning of cesium lead halide perovskite nanocrystals by additive jet printing for efficient white light generation. Chemical Engineering Journal, 2020, 380, 122493.	6.6	41
31	SERS-active hydrophobic substrates fabricated by surface growth of Cu nanostructures. Microchemical Journal, 2020, 154, 104628.	2.3	23
32	Writing chemical patterns using electrospun fibers as nanoscale inkpots for directed assembly of colloidal nanocrystals. Nanoscale, 2020, 12, 895-903.	2.8	6
33	Chitosan Loses Innate Beneficial Properties after Being Dissolved in Acetic Acid: Supported by Detailed Molecular Modeling. ACS Sustainable Chemistry and Engineering, 2020, 8, 18083-18093.	3.2	15
34	Fabrication of robust superhydrophobic surfaces by one-step spray coating: Evaporation driven self-assembly of wax and nanoparticles into hierarchical structures. Chemical Engineering Journal, 2020, 396, 125230.	6.6	143
35	Chemical Funneling of Colloidal Gold Nanoparticles on Printed Arrays of End-Grafted Polymers for Plasmonic Applications. ACS Nano, 2020, 14, 8276-8286.	7.3	34
36	Effect of fabric texture on the durability of fluorine-free superhydrophobic coatings. Journal of Coatings Technology Research, 2020, 17, 785-796.	1.2	17

#	Article	IF	CITATIONS
37	Low bandgap microsphere-like magnetic nanocomposite: An enhanced photocatalyst for degradation of organic contaminants and fabrication of SERS-active surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 589, 124436.	2.3	19
38	Usage of natural chitosan membrane obtained from insect corneal lenses as a drug carrier and its potential for point of care tests. Materials Science and Engineering C, 2020, 112, 110897.	3.8	16
39	Arrays of Plasmonic Nanoparticles Assembled on Patterns of Polymer Brushes Fabricated by Soft Lithography. Hittite Journal of Science & Engineering, 2020, 7, 181-188.	0.2	0
40	The relationship of surface roughness and wettability of 316L stainless steel implants with plastic deformation mechanisms. Materials Today: Proceedings, 2019, 7, 389-393.	0.9	7
41	Superhydrophobic coatings made from biocompatible polydimethylsiloxane and natural wax. Progress in Organic Coatings, 2019, 136, 105279.	1.9	52
42	Solid-State Encapsulation and Color Tuning in Films of Cesium Lead Halide Perovskite Nanocrystals for White Light Generation. ACS Applied Nano Materials, 2019, 2, 1185-1193.	2.4	15
43	One-step deposition of hydrophobic coatings on paper for printed-electronics applications. Cellulose, 2019, 26, 3503-3512.	2.4	22
44	Solid substrates decorated with Ag nanostructures for the catalytic degradation of methyl orange. Results in Physics, 2019, 12, 1133-1141.	2.0	39
45	Eco-Friendly Fabrication of Plasmonically Active Substrates Based on End-Grafted Poly(ethylene) Tj ETQq1 1 0.7	84314 rgB1 3.2	「/Qyerlock 1
46	FRET enabled light harvesting within quantum dot loaded nanofibers. Journal Physics D: Applied Physics, 2018, 51, 065111.	1.3	15
47	Water Impact Resistant and Antireflective Superhydrophobic Surfaces Fabricated by Spray Coating of Nanoparticles: Interface Engineering via End-Grafted Polymers. Macromolecules, 2018, 51, 10011-10020.	2.2	50
48	Plasmonic assemblies of gold nanorods on nanoscale patterns of poly(ethylene glycol): Application in surface-enhanced Raman spectroscopy. Journal of Colloid and Interface Science, 2018, 532, 449-455.	5.0	30
49	Arrays of Multi-Color Emitting Cesium Lead Halide Perovskite Nanocrystals and Efficient White Light Generation by Tailored Anion Exchange Reactions and Electrohydrodynamic Jet Printing. , 2018, , .		0
50	Assembly of Plasmonic Nanoparticles on Nanopatterns of Polymer Brushes Fabricated by Electrospin Nanolithography. ACS Macro Letters, 2017, 6, 603-608.	2.3	23
51	Modulating the Kinetics of Nanoparticle Adsorption for Simple and High‥ield Fabrication of Plasmonic Heterostructures as SERS Substrates. ChemPhysChem, 2017, 18, 2114-2122.	1.0	16
52	Robust superhydrophobicity on paper: Protection of spray-coated nanoparticles against mechanical wear by the microstructure of paper. Surface and Coatings Technology, 2017, 319, 301-308.	2.2	43
53	Fabrication of Plasmonically Active Substrates Using Engineered Silver Nanostructures for SERS Applications. ACS Applied Materials & amp; Interfaces, 2017, 9, 39795-39803.	4.0	43
54	Size and structure dependent ultrafast dynamics of plasmonic gold nanosphere heterostructures on poly (ethylene glycol) brushes. Optical Materials, 2017, 73, 83-88.	1.7	5

#	Article	IF	CITATIONS
55	Low temperature growth of graphene using inductively-coupled plasma chemical vapor deposition. Surface and Coatings Technology, 2017, 309, 814-819.	2.2	19
56	Superhydrophobic coatings with improved mechanical robustness based on polymer brushes. Surface and Coatings Technology, 2016, 299, 162-168.	2.2	42
57	Ambient, rapid and facile deposition of polymer brushes for immobilization of plasmonic nanoparticles. Applied Surface Science, 2016, 385, 299-307.	3.1	12
58	Printing: Mechanisms, Capabilities, and Applications of Highâ€Resolution Electrohydrodynamic Jet Printing (Small 34/2015). Small, 2015, 11, 4412-4412.	5.2	6
59	Mechanisms, Capabilities, and Applications of Highâ€Resolution Electrohydrodynamic Jet Printing. Small, 2015, 11, 4237-4266.	5.2	437
60	Inkjet Printing of Regenerated Silk Fibroin: From Printable Forms to Printable Functions. Advanced Materials, 2015, 27, 4273-4279.	11.1	174
61	High-Resolution Patterns of Quantum Dots Formed by Electrohydrodynamic Jet Printing for Light-Emitting Diodes. Nano Letters, 2015, 15, 969-973.	4.5	355
62	Fabrication of Nanopatterned Poly(ethylene glycol) Brushes by Molecular Transfer Printing from Poly(styrene- <i>block</i> -methyl methacrylate) Films to Generate Arrays of Au Nanoparticles. Langmuir, 2015, 31, 1225-1230.	1.6	20
63	Interplay of Surface Energy and Bulk Thermodynamic Forces in Ordered Block Copolymer Droplets. Macromolecules, 2015, 48, 4717-4723.	2.2	11
64	Self-Assembled Nanoparticle Arrays on Chemical Nanopatterns Prepared Using Block Copolymer Lithography. ACS Macro Letters, 2015, 4, 1356-1361.	2.3	33
65	Nanometer Scale Alignment of Blockâ€Copolymer Domains by Means of a Scanning Probe Tip. Advanced Materials, 2014, 26, 2999-3002.	11.1	17
66	Electrohydrodynamic jet printing of micro-optical devices. Manufacturing Letters, 2014, 2, 4-7.	1.1	33
67	Block Copolymer Assembly on Nanoscale Patterns of Polymer Brushes Formed by Electrohydrodynamic Jet Printing. ACS Nano, 2014, 8, 6606-6613.	7.3	52
68	Tunable Assembly of Gold Nanoparticles on Nanopatterned Poly(ethylene glycol) Brushes. Small, 2013, 9, 4168-4174.	5.2	28
69	Hierarchical patterns of three-dimensional block-copolymer films formed by electrohydrodynamic jet printing and self-assembly. Nature Nanotechnology, 2013, 8, 667-675.	15.6	157
70	In situmetallization of patterned polymer brushes created by molecular transfer print and fill. Nanotechnology, 2013, 24, 155602.	1.3	11
71	Highly Selective Immobilization of Au Nanoparticles onto Isolated and Dense Nanopatterns of Poly(2-vinyl pyridine) Brushes down to Single-Particle Resolution. Langmuir, 2012, 28, 7299-7307.	1.6	29
72	Control over Position, Orientation, and Spacing of Arrays of Gold Nanorods Using Chemically Nanopatterned Surfaces and Tailored Particle–Particle–Surface Interactions. ACS Nano, 2012, 6, 5693-5701.	7.3	126

#	Article	IF	CITATIONS
73	Fabrication of Lithographically Defined Chemically Patterned Polymer Brushes and Mats. Macromolecules, 2011, 44, 1876-1885.	2.2	191
74	Localization of Multiple DNA Sequences on Nanopatterns. ACS Nano, 2011, 5, 7899-7909.	7.3	19
75	Siteâ€Specific Placement of Au Nanoparticles on Chemical Nanopatterns Prepared by Molecular Transfer Printing Using Blockâ€Copolymer Films. Advanced Functional Materials, 2011, 21, 3074-3082.	7.8	30
76	In situ synthesis and direct immobilization of ssDNA on electron beam patterned hydrogen silsesquioxane. Journal of Vacuum Science & Technology B, 2009, 27, 3082.	1.3	3