Christine O Didier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9086112/publications.pdf

Version: 2024-02-01

430442 642321 23 804 18 23 citations g-index h-index papers 23 23 23 1294 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Inhibition of ubiquitin-specific protease 7 sensitizes acute myeloid leukemia to chemotherapy. Leukemia, 2021, 35, 417-432.	3.3	22
2	Regulation of CHK1 by the Ubiquitin–Proteasome System. FEBS Journal, 2020, 287, 1982-1984.	2.2	4
3	A PIM-CHK1 signaling pathway regulates PLK1 phosphorylation and function during mitosis. Journal of Cell Science, 2018, 131, .	1.2	7
4	Targeting ATR/CHK1 pathway in acute myeloid leukemia to overcome chemoresistance. Molecular and Cellular Oncology, 2017, 4, e1289293.	0.3	3
5	CHK1 as a therapeutic target to bypass chemoresistance in AML. Science Signaling, 2016, 9, ra90.	1.6	73
6	CDC25A governs proliferation and differentiation of FLT3-ITD acute myeloid leukemia. Oncotarget, 2015, 6, 38061-38078.	0.8	20
7	Targeting CHK1 inhibits cell proliferation in FLT3-ITD positive acute myeloid leukemia. Leukemia Research, 2014, 38, 1342-1349.	0.4	20
8	Pim kinases phosphorylate Chk1 and regulate its functions in acute myeloid leukemia. Leukemia, 2014, 28, 293-301.	3.3	27
9	Evaluation of checkpoint kinase targeting therapy in Acute Myeloid Leukemia with complex karyotype. Cancer Biology and Therapy, 2012, 13, 307-313.	1.5	17
10	Constitutive Activation of the DNA Damage Signaling Pathway in Acute Myeloid Leukemia with Complex Karyotype: Potential Importance for Checkpoint Targeting Therapy. Cancer Research, 2009, 69, 8652-8661.	0.4	67
11	G2/M checkpoint stringency is a key parameter in the sensitivity of AML cells to genotoxic stress. Oncogene, 2008, 27, 3811-3820.	2.6	40
12	Evaluation of Polo-like Kinase 1 inhibition on the G2/M checkpoint in Acute Myelocytic Leukaemia. European Journal of Pharmacology, 2008, 591, 102-105.	1.7	22
13	Inhibition of Proteasome Activity Impairs Centrosome-dependent Microtubule Nucleation and Organization. Molecular Biology of the Cell, 2008, 19, 1220-1229.	0.9	46
14	Cell Adhesion Regulates CDC25A Expression and Proliferation in Acute Myeloid Leukemia. Cancer Research, 2006, 66, 7128-7135.	0.4	43
15	JAMP, a Jun N-Terminal Kinase 1 (JNK1)-Associated Membrane Protein, Regulates Duration of JNK Activity. Molecular and Cellular Biology, 2005, 25, 8619-8630.	1.1	19
16	The small ubiquitin-like modifier (SUMO) is required for gonadal and uterine-vulval morphogenesis in Caenorhabditis elegans. Genes and Development, 2004, 18, 2380-2391.	2.7	71
17	The LIM domain protein UNC-95 is required for the assembly of muscle attachment structures and is regulated by the RING finger protein RNF-5 in C. elegans. Journal of Cell Biology, 2004, 165, 857-867.	2.3	43
18	RNF5, a RING Finger Protein That Regulates Cell Motility by Targeting Paxillin Ubiquitination and Altered Localization. Molecular and Cellular Biology, 2003, 23, 5331-5345.	1.1	103

#	Article	IF	CITATION
19	Effects of cadmium and zinc on solar-simulated light-irradiated cells: potential role of zinc-metallothionein in zinc-induced genoprotection. Archives of Biochemistry and Biophysics, 2002, 405, 170-177.	1.4	22
20	Human Immunodeficiency Virus Type 1 Tat Protein Impairs Selenoglutathione Peroxidase Expression and Activity by a Mechanism Independent of Cellular Selenium Uptake: Consequences on Cellular Resistance to UV-A Radiation. Archives of Biochemistry and Biophysics, 2001, 386, 213-220.	1.4	27
21	Modulation of exogenous and endogenous levels of thioredoxin in human skin fibroblasts prevents DNA damaging effect of ultraviolet A radiation. Free Radical Biology and Medicine, 2001, 30, 537-546.	1.3	23
22	Induction of thioredoxin by ultraviolet-A radiation prevents oxidative-mediated cell death in human skin fibroblasts. Free Radical Biology and Medicine, 2001, 31, 585-598.	1.3	60
23	Lâ€arginine increases UVA cytotoxicity in irradiated human keratinocyte cell line: potential role of nitric oxide. FASEB Journal, 1999, 13, 1817-1824.	0.2	25