Mohsen Nami

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9086006/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	CMOS-compatible silicon nanowire field-effect transistors: Where nanotechnology pushes the limits in biosensing. , 2022, , 327-362.		1
2	Designing Sensitivity: A Comparative Analysis of Microelectrode Topologies for Electrochemical Oxygen Sensing in Biomedical Applications. Micromachines, 2022, 13, 141.	2.9	2
3	Laser Interferometry for Precise Measurement of Ultralow Flow Rates from Permeable Materials. Environmental Science and Technology Letters, 2022, 9, 233-238.	8.7	Ο
4	Rapid Screen for Antiviral Tâ€Cell Immunity with Nanowire Electrochemical Biosensors. Advanced Materials, 2022, 34, e2109661.	21.0	9
5	Selective Area Regrowth Produces Nonuniform Mg Doping Profiles in Nonplanar GaN p–n Junctions. ACS Applied Electronic Materials, 2021, 3, 704-710.	4.3	8
6	Etched-And-Regrown GaN P–N Diodes with Low-Defect Interfaces Prepared by In Situ TBCl Etching. ACS Applied Materials & Interfaces, 2021, 13, 53220-53226.	8.0	3
7	A study of damage-free in-situ etching of GaN in metalorganic chemical vapor deposition (MOCVD) by tertiarybutylchloride (TBCl). Journal of Crystal Growth, 2020, 534, 125492.	1.5	9
8	Electrically Injected GHz-Class GaN/InGaN Core–Shell Nanowire-Based μLEDs: Carrier Dynamics and Nanoscale Homogeneity. ACS Photonics, 2019, 6, 1618-1625.	6.6	52
9	<i>In situ</i> and selective area etching of GaN by tertiarybutylchloride (TBCl). Applied Physics Letters, 2019, 115, .	3.3	9
10	Nanoporous distributed Bragg reflectors on free-standing nonpolar <i>m</i> -plane GaN. Applied Physics Letters, 2018, 112, .	3.3	34
11	Carrier Dynamics and Electro-Optical Characterization of High-Performance GaN/InGaN Core-Shell Nanowire Light-Emitting Diodes. Scientific Reports, 2018, 8, 501.	3.3	69
12	Scalable Top-Down Approach Tailored by Interferometric Lithography to Achieve Large-Area Single-Mode GaN Nanowire Laser Arrays on Sapphire Substrate. ACS Nano, 2018, 12, 2373-2380.	14.6	41
13	Spectrally-resolved internal quantum efficiency and carrier dynamics of semipolar \$(10ar{1}1)\$ core-shell triangular nanostripe GaN/InGaN LEDs. Nanotechnology, 2018, 29, 235206.	2.6	5
14	Trade-off between bandwidth and efficiency in semipolar (202¯1¯) InGaN/GaN single- and multiple-quantum-well light-emitting diodes. Applied Physics Letters, 2018, 112, .	3.3	27
15	High-Speed Nonpolar InGaN/GaN LEDs for Visible-Light Communication. IEEE Photonics Technology Letters, 2017, 29, 381-384.	2.5	67
16	GaN nanowire tips for nanoscale atomic force microscopy. Nanotechnology, 2017, 28, 20LT01.	2.6	18
17	Reduction of reverseâ€leakage current in selectiveâ€areaâ€grown GaNâ€based core–shell nanostructure LEDs using AlGaN layers. Physica Status Solidi (A) Applications and Materials Science, 2017, 214, 1600776.	1.8	14
18	Tailoring the morphology and luminescence of GaN/InGaN core–shell nanowires using bottom-up selective-area epitaxy. Nanotechnology, 2017, 28, 025202.	2.6	30

#	Article	IF	CITATIONS
19	Differential carrier lifetime and transport effects in electrically injected III-nitride light-emitting diodes. Journal of Applied Physics, 2017, 122, .	2.5	47

Internal quantum efficiency and carrier dynamics in semipolar (20<span style="text-decoration:) Tj ETQq0 0 0 rgBT/Overlock 10 Tf 50 3.4

21	Explanation of low efficiency droop in semipolar (202Â ⁻ 1Â ⁻) InGaN/GaN LEDs through evaluation of carrier recombination coefficients. Optics Express, 2017, 25, 19343.	3.4	34
22	High-Speed Nonpolar InGaN/GaN LEDs for Visible-Light Communication. , 2017, , .		0
23	Semipolar InGaN/GaN nanostructure light-emitting diodes on c-plane sapphire. Applied Physics Express, 2016, 9, 032101.	2.4	17
24	Ordered arrays of bottom-up III-nitride core-shell nanostructures. , 2015, , .		6
25	Optical properties of Ag-coated GaN/InGaN axial and core–shell nanowire light-emitting diodes. Journal of Optics (United Kingdom), 2015, 17, 025004.	2.2	14
26	Investigation of plasmonic enhancement in a quantum dot-in-a-well structure. Proceedings of SPIE, 2015, , .	0.8	0
27	Optical properties of plasmonic light-emitting diodes based on flip-chip III-nitride core-shell nanowires. Optics Express, 2014, 22, 29445.	3.4	25
28	Investigation of Purcell Factor and Light Extraction Efficiency in Ag-Coated GaN/InGaN Core-Shell Nanowires. , 2014, , .		1
29	Analysis of light extraction efficiency for gallium nitride-based coaxial microwall light-emitting diodes. Physica Status Solidi C: Current Topics in Solid State Physics, 2014, 11, 766-770.	0.8	5
30	Two-Wavelength Switching With a 1310-nm Quantum Dot Distributed Feedback Laser. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19, 1900708-1900708.	2.9	7
31	Tunable microwave signal generator with an optically-injected 1310nm QD-DFB laser. Optics Express, 2013, 21, 10772.	3.4	43
32	Analysis and applications of an optically-injected 1310 nm Quantum-Dot Distributed Feedback laser. , 2013, , .		0
33	Tunable microwave, millimeter-wave and THz signal generation with a 1310nm quantum dot laser. , 2013, , .		0
34	Two-wavelength switching with a 1310nm-QDot DFB laser. , 2013, , .		0
35	Bistability patterns and nonlinear switching with very high contrast ratio in a 1550 nm quantum dash semiconductor laser. Applied Physics Letters, 2012, 101,	3.3	17
36	Bistability and switching with very high contrast ratio in an optically-injected 1550nm-QDash Fabry-Perot laser. , 2012, , .		0

#	Article	IF	CITATIONS
37	Improving micromachining: process using a new mode converter system. , 0, , .		0