Pavel ZahradnÃ-Äek

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9085848/publications.pdf

Version: 2024-02-01

567281 526287 32 809 15 citations h-index papers

27 g-index 32 32 32 892 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Longâ€term changes in drought indices in eastern and central Europe. International Journal of Climatology, 2022, 42, 225-249.	3.5	41
2	Circulation and Climate Variability in the Czech Republic between 1961 and 2020: A Comparison of Changes for Two "Normal―Periods. Atmosphere, 2022, 13, 137.	2.3	23
3	Temperature extremes and circulation types in the Czech Republic, 1961–2020. International Journal of Climatology, 2022, 42, 4808-4829.	3.5	12
4	Weather and traffic accidents in the Czech Republic, 1979–2020. Theoretical and Applied Climatology, 2022, 149, 153-167.	2.8	10
5	Changes in Weather-Related Fatalities in the Czech Republic during the 1961–2020 Period. Atmosphere, 2022, 13, 688.	2.3	4
6	Phenological Response of Flood Plain Forest Ecosystem Species to Climate Change during 1961–2021. Atmosphere, 2022, 13, 978.	2.3	4
7	Reflections of global warming in trends of temperature characteristics in the Czech Republic, 1961–2019. International Journal of Climatology, 2021, 41, 1211-1229.	3.5	46
8	Precipitation measurements by manual and automatic rain gauges and their influence on homogeneity of longâ€term precipitation series. International Journal of Climatology, 2021, 41, E2537.	3.5	6
9	Soil drought and circulation types in a longitudinal transect over central Europe. International Journal of Climatology, 2021, 41, E2834.	3.5	11
10	Observed changes in precipitation during recent warming: The Czech Republic, 1961–2019. International Journal of Climatology, 2021, 41, 3881-3902.	3.5	33
11	Fatalities associated with the severe weather conditions in the Czech Republic, 2000–2019. Natural Hazards and Earth System Sciences, 2021, 21, 1355-1382.	3.6	14
12	Effects of Climatic and Soil Data on Soil Drought Monitoring Based on Different Modelling Schemes. Atmosphere, 2021, 12, 913.	2.3	5
13	Assess hydrological responses to a warming climate at the Lysina Critical Zone Observatory in Central Europe. Hydrological Processes, 2021, 35, e14281.	2.6	2
14	Observed and estimated consequences of climate change for the fire weather regime in the moist-temperate climate of the Czech Republic. Agricultural and Forest Meteorology, 2021, 310, 108583.	4.8	10
15	The 1921 European drought: impacts, reconstruction and drivers. Climate of the Past, 2021, 17, 2201-2221.	3.4	4
16	Precipitation in the Czech Republic in Light of Subjective and Objective Classifications of Circulation Types. Atmosphere, 2021, 12, 1536.	2.3	12
17	Comparison of homogenization methods for daily temperature series against an observation-based benchmark dataset. Theoretical and Applied Climatology, 2020, 140, 285-301.	2.8	23
18	Past (1971–2018) and future (2021–2100) pan evaporation rates in the Czech Republic. Journal of Hydrology, 2020, 590, 125390.	5.4	29

#	Article	IF	Citations
19	Large wood load and transport in a floodâ€free period within an interâ€dam reach: a decade of monitoring the Dyje River, Czech Republic. Earth Surface Processes and Landforms, 2020, 45, 3540-3555.	2.5	5
20	Czech Drought Monitor System for monitoring and forecasting agricultural drought and drought impacts. International Journal of Climatology, 2020, 40, 5941-5958.	3. 5	55
21	Potential of Documentary Evidence to Study Fatalities of Hydrological and Meteorological Events in the Czech Republic. Water (Switzerland), 2019, 11, 2014.	2.7	11
22	Differences in wind speeds according to measured and homogenized series in the Czech Republic, 1961–2015. International Journal of Climatology, 2019, 39, 235-250.	3.5	16
23	The extreme drought of 1842 in Europe as described by both documentary data and instrumental measurements. Climate of the Past, 2019, 15, 1861-1884.	3.4	18
24	Projected changes in the evolution of drought on various timescales over the Czech Republic according to Euroâ€CORDEX models. International Journal of Climatology, 2018, 38, e939.	3.5	18
25	Projected shift of Köppen–Geiger zones in the central Europe: A first insight into the implications for ecosystems and the society. International Journal of Climatology, 2018, 38, 3595-3606.	3.5	16
26	The variability of maximum wind gusts in the Czech Republic between 1961 and 2014. International Journal of Climatology, 2017, 37, 1961-1978.	3.5	18
27	The extreme drought episode of August 2011–May 2012 in the Czech Republic. International Journal of Climatology, 2015, 35, 3335-3352.	3.5	53
28	Climate of the Carpathian Region in the period 1961-2010: climatologies and trends of 10 variables. International Journal of Climatology, 2015, 35, 1322-1341.	3.5	152
29	Homogenization of monthly precipitation time series in Croatia. International Journal of Climatology, 2014, 34, 3671-3682.	3.5	17
30	Long-term variability of temperature and precipitation in the Czech Lands: an attribution analysis. Climatic Change, 2014, 125, 253-264.	3.6	14
31	Temperature and precipitation fluctuations in the Czech Republic during the period of instrumental measurements. Theoretical and Applied Climatology, 2012, 110, 17-34.	2.8	72
32	Could the changes in regional crop yields be a pointer of climatic change?. Agricultural and Forest Meteorology, 2012, 166-167, 62-71.	4.8	55