David P. Fewer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9085807/publications.pdf

Version: 2024-02-01

70961 62479 6,924 91 41 80 citations h-index g-index papers 97 97 97 6942 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The Natural Products Atlas 2.0: a database of microbially-derived natural products. Nucleic Acids Research, 2022, 50, D1317-D1323.	6.5	112
2	Discovery of varlaxins, new aeruginosin-type inhibitors of human trypsins. Organic and Biomolecular Chemistry, 2022, 20, 2681-2692.	1.5	8
3	Fatty Acid Substitutions Modulate the Cytotoxicity of Puwainaphycins/Minutissamides Isolated from the Baltic Sea Cyanobacterium <i>Nodularia harveyana</i> UHCC-0300. ACS Omega, 2022, 7, 11818-11828.	1.6	2
4	Single cell mutant selection for metabolic engineering of actinomycetes. Metabolic Engineering, 2022, 73, 124-133.	3.6	7
5	Semi-synthetic puwainaphycin/minutissamide cyclic lipopeptides with improved antifungal activity and limited cytotoxicity. RSC Advances, 2021, 11, 30873-30886.	1.7	7
6	A community resource for paired genomic and metabolomic data mining. Nature Chemical Biology, 2021, 17, 363-368.	3.9	81
7	CyanoMetDB, a comprehensive public database of secondary metabolites from cyanobacteria. Water Research, 2021, 196, 117017.	5. 3	142
8	Genome Reduction and Secondary Metabolism of the Marine Sponge-Associated Cyanobacterium Leptothoe. Marine Drugs, 2021, 19, 298.	2.2	4
9	Doing synthetic biology with photosynthetic microorganisms. Physiologia Plantarum, 2021, 173, 624-638.	2.6	20
10	Chemical diversity and cellular effects of antifungal cyclic lipopeptides from cyanobacteria. Physiologia Plantarum, 2021, 173, 639-650.	2.6	16
11	The structure and biosynthesis of heinamides A1–A3 and B1–B5, antifungal members of the laxaphycin lipopeptide family. Organic and Biomolecular Chemistry, 2021, 19, 5577-5588.	1.5	5
12	Potent Inhibitor of Human Trypsins from the Aeruginosin Family of Natural Products. ACS Chemical Biology, 2021, 16, 2537-2546.	1.6	11
13	Mining of Cyanobacterial Genomes Indicates Natural Product Biosynthetic Gene Clusters Located in Conjugative Plasmids. Frontiers in Microbiology, 2021, 12, 684565.	1.5	12
14	A pharmaceutical model for the molecular evolution of microbial natural products. FEBS Journal, 2020, 287, 1429-1449.	2.2	22
15	Dereplication of Natural Products with Antimicrobial and Anticancer Activity from Brazilian Cyanobacteria. Toxins, 2020, 12, 12.	1.5	27
16	Shared PKS Module in Biosynthesis of Synergistic Laxaphycins. Frontiers in Microbiology, 2020, 11, 578878.	1.5	14
17	Phylogenomic Analysis of Secondary Metabolism in the Toxic Cyanobacterial Genera Anabaena, Dolichospermum and Aphanizomenon. Toxins, 2020, 12, 248.	1.5	34
18	Biosynthesis of the Bis-Prenylated Alkaloids Muscoride A and B. ACS Chemical Biology, 2019, 14, 2683-2690.	1.6	32

#	Article	IF	CITATIONS
19	The Biosynthesis of Rare Homo-Amino Acid Containing Variants of Microcystin by a Benthic Cyanobacterium. Marine Drugs, 2019, 17, 271.	2.2	20
20	Antitumor astins originate from the fungal endophyte <i>Cyanodermella asteris</i> living within the medicinal plant <i>Aster tataricus</i> . Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 26909-26917.	3.3	39
21	Alternative Biosynthetic Starter Units Enhance the Structural Diversity of Cyanobacterial Lipopeptides. Applied and Environmental Microbiology, 2019, 85, .	1.4	24
22	Strains of the toxic and bloom-forming <i>Nodularia spumigena</i> (cyanobacteria) can degrade methylphosphonate and release methane. ISME Journal, 2018, 12, 1619-1630.	4.4	75
23	Discovery of a Pederin Family Compound in a Nonsymbiotic Bloom-Forming Cyanobacterium. ACS Chemical Biology, 2018, 13, 1123-1129.	1.6	27
24	The Swinholide Biosynthesis Gene Cluster from a Terrestrial Cyanobacterium, Nostoc sp. Strain UHCC 0450. Applied and Environmental Microbiology, 2018, 84, .	1.4	21
25	Sphaerocyclamide, a prenylated cyanobactin from the cyanobacterium Sphaerospermopsis sp. LEGE 00249. Scientific Reports, 2018, 8, 14537.	1.6	27
26	N-Prenylation of Tryptophan by an Aromatic Prenyltransferase from the Cyanobactin Biosynthetic Pathway. Biochemistry, 2018, 57, 6860-6867.	1.2	26
27	Genetic Organization of Anabaenopeptin and Spumigin Biosynthetic Gene Clusters in the Cyanobacterium <i>Sphaerospermopsis torques-reginae</i> ITEP-024. ACS Chemical Biology, 2017, 12, 769-778.	1.6	25
28	Phylogenomic Analysis of the Microviridin Biosynthetic Pathway Coupled with Targeted Chemo-Enzymatic Synthesis Yields Potent Protease Inhibitors. ACS Chemical Biology, 2017, 12, 1538-1546.	1.6	45
29	Rearranged Biosynthetic Gene Cluster and Synthesis of Hassallidin E in <i>Planktothrix serta</i> PCC 8927. ACS Chemical Biology, 2017, 12, 1796-1804.	1.6	25
30	Cyclic peptide production using a macrocyclase with enhanced substrate promiscuity and relaxed recognition determinants. Chemical Communications, 2017, 53, 10656-10659.	2.2	19
31	Simultaneous Production of Anabaenopeptins and Namalides by the Cyanobacterium <i>Nostoc</i> sp. CENA543. ACS Chemical Biology, 2017, 12, 2746-2755.	1.6	35
32	Production of High Amounts of Hepatotoxin Nodularin and New Protease Inhibitors Pseudospumigins by the Brazilian Benthic Nostoc sp. CENA543. Frontiers in Microbiology, 2017, 8, 1963.	1.5	35
33	The cyclochlorotine mycotoxin is produced by the nonribosomal peptide synthetase CctN in <i>Talaromyces islandicus</i> (â€~ <i>Penicillium islandicum</i> '). Environmental Microbiology, 2016, 18, 3728-3741.	1.8	15
34	A Unique Tryptophan Câ€Prenyltransferase from the Kawaguchipeptin Biosynthetic Pathway. Angewandte Chemie - International Edition, 2016, 55, 3596-3599.	7.2	49
35	A Unique Tryptophan Câ€Prenyltransferase from the Kawaguchipeptin Biosynthetic Pathway. Angewandte Chemie, 2016, 128, 3660-3663.	1.6	6
36	A liquid chromatography–mass spectrometric method for the detection of cyclic β-amino fatty acid lipopeptides. Journal of Chromatography A, 2016, 1438, 76-83.	1.8	13

#	Article	IF	Citations
37	Antifungal Compounds from Cyanobacteria. Marine Drugs, 2015, 13, 2124-2140.	2.2	83
38	Natural Product Biosynthetic Diversity and Comparative Genomics of the Cyanobacteria. Trends in Microbiology, 2015, 23, 642-652.	3.5	266
39	Antifungal activity improved by coproduction of cyclodextrins and anabaenolysins in Cyanobacteria. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 13669-13674.	3.3	27
40	Minimum Information about a Biosynthetic Gene cluster. Nature Chemical Biology, 2015, 11, 625-631.	3.9	715
41	Draft genome sequence of Talaromyces islandicus ("Penicillium islandicumâ€) WF-38-12, a neglected mold with significant biotechnological potential. Journal of Biotechnology, 2015, 211, 101-102.	1.9	17
42	Genomic insights into the distribution, genetic diversity and evolution of polyketide synthases and nonribosomal peptide synthetases. Current Opinion in Genetics and Development, 2015, 35, 79-85.	1.5	33
43	Pseudoaeruginosins, Nonribosomal Peptides inNodularia spumigena. ACS Chemical Biology, 2015, 10, 725-733.	1.6	22
44	Identification of geosmin and 2-methylisoborneol in cyanobacteria and molecular detection methods for the producers of these compounds. Water Research, 2015, 68, 56-66.	5.3	114
45	Phylum-wide comparative genomics unravel the diversity of secondary metabolism in Cyanobacteria. BMC Genomics, 2014, 15, 977.	1.2	175
46	4-Methylproline Guided Natural Product Discovery: Co-Occurrence of 4-Hydroxy- and 4-Methylprolines in Nostoweipeptins and Nostopeptolides. ACS Chemical Biology, 2014, 9, 2646-2655.	1.6	28
47	Reply to Sasso et al.: Distribution and phylogeny of nonribosomal peptide and polyketide biosynthetic pathways in eukaryotes. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E3947-E3947.	3.3	2
48	Hassallidins, antifungal glycolipopeptides, are widespread among cyanobacteria and are the end-product of a nonribosomal pathway. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E1909-17.	3.3	102
49	Nostosins, Trypsin Inhibitors Isolated from the Terrestrial Cyanobacterium <i>Nostoc</i> sp. Strain FSN. Journal of Natural Products, 2014, 77, 1784-1790.	1.5	41
50	Atlas of nonribosomal peptide and polyketide biosynthetic pathways reveals common occurrence of nonmodular enzymes. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 9259-9264.	3.3	310
51	The Genetic Basis for O-Acetylation of the Microcystin Toxin in Cyanobacteria. Chemistry and Biology, 2013, 20, 861-869.	6.2	20
52	Genome Mining Expands the Chemical Diversity of the Cyanobactin Family to Include Highly Modified Linear Peptides. Chemistry and Biology, 2013, 20, 1033-1043.	6.2	90
53	Cyanobacterial toxins: biosynthetic routes and evolutionary roots. FEMS Microbiology Reviews, 2013, 37, 23-43.	3.9	282
54	Lichen species identity and diversity of cyanobacterial toxins in symbiosis. New Phytologist, 2013, 198, 647-651.	3.5	22

#	Article	IF	Citations
55	Convergent evolution of [D-Leucine1] microcystin-LR in taxonomically disparate cyanobacteria. BMC Evolutionary Biology, 2013, 13, 86.	3.2	29
56	Improving the coverage of the cyanobacterial phylum using diversity-driven genome sequencing. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 1053-1058.	3.3	769
57	Insights into the Physiology and Ecology of the Brackish-Water-Adapted Cyanobacterium Nodularia spumigena CCY9414 Based on a Genome-Transcriptome Analysis. PLoS ONE, 2013, 8, e60224.	1.1	95
58	New Structural Variants of Aeruginosin Produced by the Toxic Bloom Forming Cyanobacterium Nodularia spumigena. PLoS ONE, 2013, 8, e73618.	1.1	65
59	Genome-derived insights into the biology of the hepatotoxic bloom-forming cyanobacterium Anabaena sp. strain 90. BMC Genomics, 2012, 13, 613.	1.2	52
60	Analysis of an Inactive Cyanobactin Biosynthetic Gene Cluster Leads to Discovery of New Natural Products from Strains of the Genus Microcystis. PLoS ONE, 2012, 7, e43002.	1.1	54
61	Cyanobacteria produce a high variety of hepatotoxic peptides in lichen symbiosis. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 5886-5891.	3.3	138
62	Comparison of wintertime eukaryotic community from sea ice and open water in the Baltic Sea, based on sequencing of the 18S rRNA gene. Polar Biology, 2012, 35, 875-889.	0.5	60
63	Cyanobacterial toxins: biosynthetic routes and evolutionary roots. FEMS Microbiology Reviews, 2012, , n/a-n/a.	3.9	2
64	Deinobacterium chartae gen. nov., sp. nov., an extremely radiation-resistant, biofilm-forming bacterium isolated from a Finnish paper mill. International Journal of Systematic and Evolutionary Microbiology, 2011, 61, 540-548.	0.8	16
65	Speciation in Red Algae: Members of the Ceramiales as Model Organisms. Integrative and Comparative Biology, 2011, 51, 492-504.	0.9	17
66	Nonâ€autonomous transposable elements associated with inactivation of microcystin gene clusters in strains of the genus <i>Anabaena</i> isolated from the Baltic Sea. Environmental Microbiology Reports, 2011, 3, 189-194.	1.0	20
67	Galega orientalis is more diverse than Galega officinalis in Caucasus-whole-genome AFLP analysis and phylogenetics of symbiosis-related genes. Molecular Ecology, 2011, 20, 4808-4821.	2.0	18
68	Nostophycin Biosynthesis Is Directed by a Hybrid Polyketide Synthase-Nonribosomal Peptide Synthetase in the Toxic Cyanobacterium Nostoc sp. Strain 152. Applied and Environmental Microbiology, 2011, 77, 8034-8040.	1.4	29
69	Genome Mining Demonstrates the Widespread Occurrence of Gene Clusters Encoding Bacteriocins in Cyanobacteria. PLoS ONE, 2011, 6, e22384.	1.1	78
70	Cyanobactinsâ€"ribosomal cyclic peptides produced by cyanobacteria. Applied Microbiology and Biotechnology, 2010, 86, 1213-1225.	1.7	258
71	Molecular evidence for a diverse green algal community growing in the hair of sloths and a specific association with Trichophilus welckeri(Chlorophyta, Ulvophyceae). BMC Evolutionary Biology, 2010, 10, 86.	3.2	58
72	Screening for biohydrogen production by cyanobacteria isolated from the Baltic Sea and Finnish lakes. International Journal of Hydrogen Energy, 2010, 35, 1117-1127.	3.8	45

#	Article	IF	Citations
73	Two Alternative Starter Modules for the Non-Ribosomal Biosynthesis of Specific Anabaenopeptin Variants in Anabaena (Cyanobacteria). Chemistry and Biology, 2010, 17, 265-273.	6.2	100
74	Highly Diverse Cyanobactins in Strains of the Genus <i>Anabaena</i> . Applied and Environmental Microbiology, 2010, 76, 701-709.	1.4	73
75	Widespread Occurrence and Lateral Transfer of the Cyanobactin Biosynthesis Gene Cluster in Cyanobacteria. Applied and Environmental Microbiology, 2009, 75, 853-857.	1.4	57
76	The nonâ€ribosomal assembly and frequent occurrence of the protease inhibitors spumigins in the bloomâ€forming cyanobacterium <i>Nodularia spumigena</i> . Molecular Microbiology, 2009, 73, 924-937.	1.2	63
77	Horizontal gene transfer and recombination shape mesorhizobial populations in the gene center of the host plantsAstragalus luteolusandAstragalus ernestiiin Sichuan, China. FEMS Microbiology Ecology, 2009, 70, 227-235.	1.3	18
78	Cultureâ€independent evidence for the persistent presence and genetic diversity of microcystinâ€producing <i>Anabaena</i> (<i>Cyanobacteria</i>) in the Gulf of Finland. Environmental Microbiology, 2009, 11, 855-866.	1.8	64
79	Microcystin Production in the Tripartite Cyanolichen <i>Peltigera leucophlebia</i> Plant-Microbe Interactions, 2009, 22, 695-702.	1.4	43
80	Genetic diversity in strains of the genus Anabaena isolated from planktonic and benthic habitats of the Gulf of Finland (Baltic Sea). FEMS Microbiology Ecology, 2008, 64, 199-208.	1.3	38
81	Evidence for positive selection acting on microcystin synthetase adenylation domains in three cyanobacterial genera. BMC Evolutionary Biology, 2008, 8, 256.	3.2	46
82	Natural occurrence of microcystin synthetase deletion mutants capable of producing microcystins in strains of the genus Anabaena (Cyanobacteria). Microbiology (United Kingdom), 2008, 154, 1007-1014.	0.7	36
83	The Diversity and Evolution of Rhizobia. Microbiology Monographs, 2007, , 3-41.	0.3	16
84	Direct Evidence for Production of Microcystins by <i>Anabaena</i> Strains from the Baltic Sea. Applied and Environmental Microbiology, 2007, 73, 6543-6550.	1.4	86
85	Strains of the cyanobacterial genera Calothrix and Rivularia isolated from the Baltic Sea display cryptic diversity and are distantly related to Gloeotrichia and Tolypothrix. FEMS Microbiology Ecology, 2007, 61, 74-84.	1.3	60
86	Recurrent adenylation domain replacement in the microcystin synthetase gene cluster. BMC Evolutionary Biology, 2007, 7, 183.	3.2	97
87	Discovery of Rare and Highly Toxic Microcystins from Lichen-Associated Cyanobacterium Nostoc sp. Strain IO-102-I. Applied and Environmental Microbiology, 2004, 70, 5756-5763.	1.4	131
88	Phylogenetic evidence for the early evolution of microcystin synthesis. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 568-573.	3.3	432
89	Phylogeny and Self-Splicing Ability of the Plastid tRNA-Leu Group I Intron. Journal of Molecular Evolution, 2003, 57, 710-720.	0.8	48
90	Novel morphology in <i>Enteromorpha </i> (Ulvophyceae) forming green tides. American Journal of Botany, 2002, 89, 1756-1763.	0.8	167

#	Article	IF	CITATIONS
91	Chroococcidiopsis and Heterocyst-Differentiating Cyanobacteria Are Each Other's Closest Living Relatives. Molecular Phylogenetics and Evolution, 2002, 23, 82-90.	1.2	100