Kaisong Yuan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9085625/publications.pdf Version: 2024-02-01

KAISONC YUAN

#	Article	IF	CITATIONS
1	On-board smartphone micromotor-based fluorescence assays. Lab on A Chip, 2022, 22, 928-935.	3.1	16
2	Dualâ€Propelled Lanbiotic Based Janus Micromotors for Selective Inactivation of Bacterial Biofilms. Angewandte Chemie, 2021, 133, 4965-4974.	1.6	10
3	Dualâ€Propelled Lanbiotic Based Janus Micromotors for Selective Inactivation of Bacterial Biofilms. Angewandte Chemie - International Edition, 2021, 60, 4915-4924.	7.2	56
4	Colorimetric and SERS dual-mode sensing of mercury (II) based on controllable etching of Au@Ag core/shell nanoparticles. Sensors and Actuators B: Chemical, 2021, 330, 129364.	4.0	38
5	Design and Control of the Micromotor Swarm Toward Smart Applications. Advanced Intelligent Systems, 2021, 3, 2100002.	3.3	22
6	Real-time monitoring of aristolochic acid I reduction process using surface-enhanced Raman Spectroscopy with DFT simulation. Biosensors and Bioelectronics, 2021, 179, 113061.	5.3	8
7	Design and Control of the Micromotor Swarm Toward Smart Applications. Advanced Intelligent Systems, 2021, 3, 2170052.	3.3	3
8	Smartphone-Based Janus Micromotors Strategy for Motion-Based Detection of Glutathione. Analytical Chemistry, 2021, 93, 16385-16392.	3.2	23
9	Nano/Micromotors for Diagnosis and Therapy of Cancer and Infectious Diseases. Chemistry - A European Journal, 2020, 26, 2309-2326.	1.7	45
10	Light-driven nanomotors and micromotors: envisioning new analytical possibilities for bio-sensing. Mikrochimica Acta, 2020, 187, 581.	2.5	36
11	Janus Micromotors Coated with 2D Nanomaterials as Dynamic Interfaces for (Bio)-Sensing. ACS Applied Materials & Interfaces, 2020, 12, 46588-46597.	4.0	37
12	Graphdiyne tubular micromotors: Electrosynthesis, characterization and self-propelled capabilities. Applied Materials Today, 2020, 20, 100743.	2.3	11
13	Frontispiece: Nano/Micromotors for Diagnosis and Therapy of Cancer and Infectious Diseases. Chemistry - A European Journal, 2020, 26, .	1.7	0
14	2D Nanomaterials Wrapped Janus Micromotors with Built-in Multiengines for Bubble, Magnetic, and Light Driven Propulsion. Chemistry of Materials, 2020, 32, 1983-1992.	3.2	64
15	Graphdiyne Micromotors in Living Biomedia. Chemistry - A European Journal, 2020, 26, 8471-8477.	1.7	14
16	Self-Assembly of Au@Ag Nanoparticles on Mussel Shell To Form Large-Scale 3D Supercrystals as Natural SERS Substrates for the Detection of Pathogenic Bacteria. ACS Omega, 2018, 3, 2855-2864.	1.6	44
17	Antimicrobial peptide based magnetic recognition elements and Au@Ag-GO SERS tags with stable internal standards: a three in one biosensor for isolation, discrimination and killing of multiple bacteria in whole blood. Chemical Science, 2018, 9, 8781-8795.	3.7	149
18	Strongly fluorescent cysteamine-coated copper nanoclusters as a fluorescent probe for determination of picric acid. Mikrochimica Acta, 2018, 185, 507.	2.5	21

KAISONG YUAN

#	Article	IF	CITATIONS
19	DNA colorimetric logic gate in microfluidic chip based on unmodified gold nanoparticles and molecular recognition. Sensors and Actuators B: Chemical, 2018, 273, 559-565.	4.0	19
20	A simple, fast, and sensitive colorimetric assay for visual detection of berberine in human plasma by NaHSO ₄ -optimized gold nanoparticles. RSC Advances, 2017, 7, 34746-34754.	1.7	28
21	Chip-based molecularly imprinted monolithic capillary array columns coated GO/SiO 2 for selective extraction and sensitive determination of rhodamine B in chili powder. Food Chemistry, 2017, 214, 664-669.	4.2	40
22	Chip-based dual-molecularly imprinted monolithic capillary array columns coated Ag/GO for selective extraction and simultaneous determination of bisphenol A and nonyl phenol in fish samples. Journal of Chromatography A, 2016, 1474, 14-22.	1.8	21
23	Molecularly imprinted coated graphene oxide solid-phase extraction monolithic capillary column for selective extraction and sensitive determination of phloxine B in coffee bean. Analytica Chimica Acta, 2015, 865, 16-21.	2.6	38
24	Simultaneous Determination of Chloramphenicol, Ciprofloxacin, Nitrofuran Antibiotics and their Metabolites in Fishery Products by CE. Chromatographia, 2015, 78, 551-556.	0.7	14
25	A simple and compact fluorescence detection system for capillary electrophoresis and its application to food analysis. Electrophoresis, 2015, 36, 2509-2515.	1.3	11
26	Sensitive determination of rose bengal in brown sugar by a molecularly imprinted solid-phase extraction monolithic capillary column coupled with capillary electrophoresis. Analytical Methods, 2015, 7, 8297-8303.	1.3	13

3