Boqiang Q Qin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9085329/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Importance and vulnerability of lakes and reservoirs supporting drinking water in China. Fundamental Research, 2023, 3, 265-273.	1.6	42
2	High probability of nitrogen and phosphorus co-limitation occurring in eutrophic lakes. Environmental Pollution, 2022, 292, 118276.	3.7	26
3	Monitoring water quality using proximal remote sensing technology. Science of the Total Environment, 2022, 803, 149805.	3.9	63
4	Wind induced algal migration manipulates sediment denitrification N-loss patterns in shallow Taihu Lake, China. Water Research, 2022, 209, 117887.	5.3	16
5	Polluted lake restoration to promote sustainability in the Yangtze River Basin, China. National Science Review, 2022, 9, nwab207.	4.6	24
6	Reconsideration of wind stress, wind waves, and turbulence in simulating wind-driven currents of shallow lakes in the Wave and Current Coupled Model (WCCM) version 1.0. Geoscientific Model Development, 2022, 15, 745-769.	1.3	8
7	Temporal dependence of chlorophyll a–nutrient relationships in Lake Taihu: Drivers and management implications. Journal of Environmental Management, 2022, 306, 114476.	3.8	25
8	Spatiotemporal dependency of resource use efficiency on phytoplankton diversity in Lake Taihu. Limnology and Oceanography, 2022, 67, 830-842.	1.6	10
9	Unraveling the Role of Anthropogenic and Natural Drivers in Shaping the Molecular Composition and Biolability of Dissolved Organic Matter in Non-pristine Lakes. Environmental Science & Technology, 2022, 56, 4655-4664.	4.6	36
10	Water clarity mapping of global lakes using a novel hybrid deep-learning-based recurrent model with Landsat OLI images. Water Research, 2022, 215, 118241.	5.3	24
11	Eutrophication and temperature drive large variability in carbon dioxide from China's Lake Taihu. Limnology and Oceanography, 2022, 67, 379-391.	1.6	36
12	Salinity Is a Key Determinant for the Microeukaryotic Community in Lake Ecosystems of the Inner Mongolia Plateau, China. Frontiers in Microbiology, 2022, 13, 841686.	1.5	4
13	Imbalance of global nutrient cycles exacerbated by the greater retention of phosphorus over nitrogen in lakes. Nature Geoscience, 2022, 15, 464-468.	5.4	35
14	Anthropogenic eutrophication of shallow lakes: Is it occasional?. Water Research, 2022, 221, 118728.	5.3	63
15	Six decades of field observations reveal how anthropogenic pressure changes the coverage and community of submerged aquatic vegetation in a eutrophic lake. Science of the Total Environment, 2022, 842, 156878.	3.9	15
16	Variation in Short-term Temperature Fluctuations Across China During the Past 60 Years. Chinese Geographical Science, 2022, 32, 563-579.	1.2	0
17	A ground-based remote sensing system for high-frequency and real-time monitoring of phytoplankton blooms. Journal of Hazardous Materials, 2022, 439, 129623.	6.5	19
18	Elucidating phytoplankton limiting factors in lakes and reservoirs of the Chinese Eastern Plains ecoregion. Journal of Environmental Management, 2022, 318, 115542.	3.8	5

#	Article	IF	CITATIONS
19	Responses of alkaline phosphatase activity to wind-driven waves in a large, shallow lake: Implications for phosphorus availability and algal blooms. Journal of Environmental Sciences, 2021, 99, 143-150.	3.2	10
20	Simulating chlorophyll-a fluorescence changing rate and phycocyanin fluorescence by using a multi-sensor system in Lake Taihu, China. Chemosphere, 2021, 264, 128482.	4.2	4
21	Response of community composition and biomass of submerged macrophytes to variation in underwater light, wind and trophic status in a large eutrophic shallow lake. Journal of Environmental Sciences, 2021, 103, 298-310.	3.2	23
22	Exploring and quantifying the relationship between instantaneous wind speed and turbidity in a large shallow lake: case study of Lake Taihu in China. Environmental Science and Pollution Research, 2021, 28, 16616-16632.	2.7	7
23	Contributions of external nutrient loading and internal cycling to cyanobacterial bloom dynamics in Lake Taihu, China: Implications for nutrient management. Limnology and Oceanography, 2021, 66, 1492-1509.	1.6	86
24	Strong turbulence accelerates sediment nitrification-denitrification for nitrogen loss in shallow lakes. Science of the Total Environment, 2021, 761, 143210.	3.9	24
25	A new perspective of copper-iron effects on bloom-forming algae in a highly impacted environment. Water Research, 2021, 195, 116889.	5.3	10
26	Extreme Climate Anomalies Enhancing Cyanobacterial Blooms in Eutrophic Lake Taihu, China. Water Resources Research, 2021, 57, e2020WR029371.	1.7	60
27	Water clarity response to climate warming and wetting of the Inner Mongolia-Xinjiang Plateau: A remote sensing approach. Science of the Total Environment, 2021, 796, 148916.	3.9	11
28	Aquatic Bacterial Diversity, Community Composition and Assembly in the Semi-Arid Inner Mongolia Plateau: Combined Effects of Salinity and Nutrient Levels. Microorganisms, 2021, 9, 208.	1.6	34
29	Atmospheric Stilling Promotes Summer Algal Growth in Eutrophic Shallow Lakes. Biology, 2021, 10, 1222.	1.3	1
30	Environmental controls of harmful cyanobacterial blooms in Chinese inland waters. Harmful Algae, 2021, 110, 102127.	2.2	28
31	Convergency and Stability Responses of Bacterial Communities to Salinization in Arid and Semiarid Areas: Implications for Global Climate Change in Lake Ecosystems. Frontiers in Microbiology, 2021, 12, 741645.	1.5	4
32	Mitigating a global expansion of toxic cyanobacterial blooms: confounding effects and challenges posed by climate change. Marine and Freshwater Research, 2020, 71, 579.	0.7	63
33	Optimized methods for diffusive greenhouse gas flux analyses in inland waters. Environmental Science and Pollution Research, 2020, 27, 25870-25876.	2.7	1
34	Mitigating eutrophication and toxic cyanobacterial blooms in large lakes:ÂThe evolution of a dual nutrient (N and P) reduction paradigm. Hydrobiologia, 2020, 847, 4359-4375.	1.0	100
35	A study of bioavailable phosphorus in the inflowing rivers of Lake Taihu, China. Aquatic Sciences, 2020, 82, 1.	0.6	9
36	The global <i>Microcystis</i> interactome. Limnology and Oceanography, 2020, 65, S194-S207.	1.6	63

#	Article	IF	CITATIONS
37	Eutrophic Lake Taihu as a significant CO2 source during 2000–2015. Water Research, 2020, 170, 115331.	5.3	85
38	Are nitrogen-to-phosphorus ratios of Chinese lakes actually increasing?. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 21000-21002.	3.3	23
39	Quantitative high-throughput approach to chalkophore screening in freshwaters. Science of the Total Environment, 2020, 735, 139476.	3.9	5
40	Understanding the long-term trend of particulate phosphorus in a cyanobacteria-dominated lake using MODIS-Aqua observations. Science of the Total Environment, 2020, 737, 139736.	3.9	25
41	Identifying spatio-temporal dynamics of trace metals in shallow eutrophic lakes on the basis of a case study in Lake Taihu, China. Environmental Pollution, 2020, 264, 114802.	3.7	26
42	Use of conductivity to indicate long-term changes in pollution processes in Lake Taihu, a large shallow lake. Environmental Science and Pollution Research, 2020, 27, 21376-21385.	2.7	15
43	Advances in freshwater risk assessment: improved accuracy of dissolved organic matter-metal speciation prediction and rapid biological validation. Ecotoxicology and Environmental Safety, 2020, 202, 110848.	2.9	10
44	Radiation dimming and decreasing water clarity fuel underwater darkening in lakes. Science Bulletin, 2020, 65, 1675-1684.	4.3	38
45	Algal Accumulation Decreases Sediment Nitrogen Removal by Uncoupling Nitrification-Denitrification in Shallow Eutrophic Lakes. Environmental Science & amp; Technology, 2020, 54, 6194-6201.	4.6	76
46	Decreasing underwater ultraviolet radiation exposure strongly driven by increasing ultraviolet attenuation in lakes in eastern and southwest China. Science of the Total Environment, 2020, 720, 137694.	3.9	15
47	Are nitrous oxide emissions indirectly fueled by input of terrestrial dissolved organic nitrogen in a large eutrophic Lake Taihu, China?. Science of the Total Environment, 2020, 722, 138005.	3.9	11
48	Water Depth Underpins the Relative Roles and Fates of Nitrogen and Phosphorus in Lakes. Environmental Science & Technology, 2020, 54, 3191-3198.	4.6	247
49	Water column nutrient concentrations are related to excretion by benthic invertebrates in Lake Taihu, China. Environmental Pollution, 2020, 261, 114161.	3.7	8
50	Relationships between nutrient, chlorophyll a and Secchi depth in lakes of the Chinese Eastern Plains ecoregion: Implications for eutrophication management. Journal of Environmental Management, 2020, 260, 109923.	3.8	68
51	Regional-scale investigation of dissolved organic matter and lead binding in a large impacted lake with a focus on environmental risk assessment. Water Research, 2020, 172, 115478.	5.3	29
52	Winter Climate Shapes Spring Phytoplankton Development in Nonâ€lceâ€Covered Lakes: Subtropical Lake Taihu as an Example. Water Resources Research, 2020, 56, e2019WR026680.	1.7	20
53	Quantifying the dependence of cyanobacterial growth to nutrient for the eutrophication management of temperate-subtropical shallow lakes. Water Research, 2020, 177, 115806.	5.3	32
54	Decreasing nitrogen loading and climate change promotes the occurrence of nitrogen-fixing cyanobacteria in a restored city lake. Hydrobiologia, 2020, 847, 2963-2975.	1.0	5

#	Article	IF	CITATIONS
55	Long-term variation of zooplankton communities in a large, heterogenous lake: Implications for future environmental change scenarios. Environmental Research, 2020, 187, 109704.	3.7	14
56	Emerging role of dissolved organic nitrogen in supporting algal bloom persistence in Lake Taihu, China: Emphasis on internal transformations. Science of the Total Environment, 2020, 736, 139497.	3.9	39
57	A semi-analytical approach for remote sensing of trophic state in inland waters: Bio-optical mechanism and application. Remote Sensing of Environment, 2019, 232, 111349.	4.6	48
58	Remote sensing of cyanobacterial blooms in inland waters: present knowledge and future challenges. Science Bulletin, 2019, 64, 1540-1556.	4.3	103
59	Remote Sensing of Secchi Depth in Highly Turbid Lake Waters and Its Application with MERIS Data. Remote Sensing, 2019, 11, 2226.	1.8	30
60	Major advances in studies of the physical geography and living environment of China during the past 70 years and future prospects. Science China Earth Sciences, 2019, 62, 1665-1701.	2.3	58
61	Catastrophic effects of sand mining on macroinvertebrates in a large shallow lake with implications for management. Science of the Total Environment, 2019, 695, 133706.	3.9	32
62	Dynamics of spatiotemporal heterogeneity of cyanobacterial blooms in large eutrophic Lake Taihu, China. Hydrobiologia, 2019, 833, 81-93.	1.0	22
63	The effect of wind speed decline on macroinvertebrates in Lake Taihu, China. Science of the Total Environment, 2019, 662, 481-489.	3.9	10
64	High Temporal Resolution Monitoring of Suspended Matter Changes from GOCI Measurements in Lake Taihu. Remote Sensing, 2019, 11, 985.	1.8	15
65	The adaptations to tube-dwelling life of Propsilocerus akamusi (Diptera: Chironomidae) larvae and its eutrophication-tolerant mechanisms. Limnologica, 2019, 77, 125684.	0.7	7
66	Climate exerts a greater modulating effect on the phytoplankton community after 2007 in eutrophic Lake Taihu, China: Evidence from 25†years of recordings. Ecological Indicators, 2019, 105, 82-91.	2.6	36
67	Metacommunity ecology meets bioassessment: Assessing spatio-temporal variation in multiple facets of macroinvertebrate diversity in human-influenced large lakes. Ecological Indicators, 2019, 103, 713-721.	2.6	22
68	The relative importance of weather and nutrients determining phytoplankton assemblages differs between seasons in large Lake Taihu, China. Aquatic Sciences, 2019, 81, 1.	0.6	30
69	Toxicological and ecotoxicological evaluation of the water quality in a large and eutrophic freshwater lake of China. Science of the Total Environment, 2019, 667, 809-820.	3.9	19
70	Data on response of in situ algal phytoplankton assemblages to micronutrient treatment in small-scale mesocosms for a large hypereutrophic lake. Data in Brief, 2019, 24, 103778.	0.5	0
71	Characteristics and development trends of ecohydrology in lakes and reservoirs – insights from bibliometrics. Ecohydrology, 2019, 12, e2080.	1.1	8
72	Phenology of Phytoplankton Blooms in a Trophic Lake Observed from Long-Term MODIS Data. Environmental Science & Technology, 2019, 53, 2324-2331.	4.6	96

#	Article	IF	CITATIONS
73	Why Lake Taihu continues to be plagued with cyanobacterial blooms through 10†years (2007–2017) efforts. Science Bulletin, 2019, 64, 354-356.	4.3	243
74	Effect of micronutrients on algae in different regions of Taihu, a large, spatially diverse, hypereutrophic lake. Water Research, 2019, 151, 500-514.	5.3	39
75	Impact of nutrient loading on phytoplankton: a mesocosm experiment in the eutrophic Lake Taihu, China. Hydrobiologia, 2019, 829, 167-187.	1.0	13
76	Highly time-resolved analysis of seasonal water dynamics and algal kinetics based on in-situ multi-sensor-system monitoring data in Lake Taihu, China. Science of the Total Environment, 2019, 660, 329-339.	3.9	24
77	Spatial and temporal distribution characteristics of different forms of inorganic nitrogen in three types of rivers around Lake Taihu, China. Environmental Science and Pollution Research, 2019, 26, 6898-6910.	2.7	22
78	Spatial distribution of sediment nitrogen and phosphorus in Lake Taihu from a hydrodynamics-induced transport perspective. Science of the Total Environment, 2019, 650, 1554-1565.	3.9	118
79	Characteristics of sediment resuspension in Lake Taihu, China: A wave flume study. Journal of Hydrology, 2018, 561, 702-710.	2.3	36
80	Optical properties and composition changes in chromophoric dissolved organic matter along trophic gradients: Implications for monitoring and assessing lake eutrophication. Water Research, 2018, 131, 255-263.	5.3	132
81	Internal phosphorus loading from sediments causes seasonal nitrogen limitation for harmful algal blooms. Science of the Total Environment, 2018, 625, 872-884.	3.9	225
82	Deteriorating water clarity in shallow waters: Evidence from long term MODIS and in-situ observations. International Journal of Applied Earth Observation and Geoinformation, 2018, 68, 287-297.	1.4	71
83	Effects of turbulence on carbon emission in shallow lakes. Journal of Environmental Sciences, 2018, 69, 166-172.	3.2	15
84	The synergetic effects of turbulence and turbidity on the zooplankton community structure in large, shallow Lake Taihu. Environmental Science and Pollution Research, 2018, 25, 1168-1175.	2.7	23
85	Features and impacts of currents and waves on sediment resuspension in a large shallow lake in China. Environmental Science and Pollution Research, 2018, 25, 36341-36354.	2.7	20
86	Effects of climatically-modulated changes in solar radiation and wind speed on spring phytoplankton community dynamics in Lake Taihu, China. PLoS ONE, 2018, 13, e0205260.	1.1	14
87	The contribution of wind wave changes on diminishing ice period in Lake PyhÃ pâr vi during the last half-century. Environmental Science and Pollution Research, 2018, 25, 24895-24906.	2.7	2
88	Field Observation of Different Windâ€Induced Basinâ€Scale Current Field Dynamics in a Large, Polymictic, Eutrophic Lake. Journal of Geophysical Research: Oceans, 2018, 123, 6945-6961.	1.0	16
89	How autochthonous dissolved organic matter responds to eutrophication and climate warming: Evidence from a cross-continental data analysis and experiments. Earth-Science Reviews, 2018, 185, 928-937.	4.0	98
90	Seasonal Gene Expression and the Ecophysiological Implications of Toxic <i>Microcystis aeruginosa</i> Blooms in Lake Taihu. Environmental Science & Technology, 2018, 52, 11049-11059.	4.6	79

#	Article	IF	CITATIONS
91	Extreme weather event may induce Microcystis blooms in the Qiantang River, Southeast China. Environmental Science and Pollution Research, 2018, 25, 22273-22284.	2.7	30
92	Response of dissolved organic matter optical properties to net inflow runoff in a large fluvial plain lake and the connecting channels. Science of the Total Environment, 2018, 639, 876-887.	3.9	25
93	Long-term dynamics and drivers of phytoplankton biomass in eutrophic Lake Taihu. Science of the Total Environment, 2018, 645, 876-886.	3.9	77
94	Climatically-modulated decline in wind speed may strongly affect eutrophication in shallow lakes. Science of the Total Environment, 2018, 645, 1361-1370.	3.9	109
95	Spatiotemporal Changes of Cyanobacterial Bloom in Large Shallow Eutrophic Lake Taihu, China. Frontiers in Microbiology, 2018, 9, 451.	1.5	80
96	Characteristics and roles of <i>Microcystis</i> extracellular polymeric substances (EPS) in cyanobacterial blooms: a short review. Journal of Freshwater Ecology, 2018, 33, 183-193.	0.5	60
97	Vertical sediment migrations of dominant midge species in subtropical lakes with implications for bioassessment. Ecological Indicators, 2018, 95, 711-719.	2.6	6
98	Accumulation of Terrestrial Dissolved Organic Matter Potentially Enhances Dissolved Methane Levels in Eutrophic Lake Taihu, China. Environmental Science & Technology, 2018, 52, 10297-10306.	4.6	76
99	Profound Changes in the Physical Environment of Lake Taihu From 25ÂYears of Longâ€Term Observations: Implications for Algal Bloom Outbreaks and Aquatic Macrophyte Loss. Water Resources Research, 2018, 54, 4319-4331.	1.7	82
100	Long-term MODIS observations of cyanobacterial dynamics in Lake Taihu: Responses to nutrient enrichment and meteorological factors. Scientific Reports, 2017, 7, 40326.	1.6	139
101	Potential rainfall-intensity and pH-driven shifts in the apparent fluorescent composition of dissolved organic matter in rainwater. Environmental Pollution, 2017, 224, 638-648.	3.7	34
102	Improving water quality in China: Environmental investment pays dividends. Water Research, 2017, 118, 152-159.	5.3	140
103	Two ultraviolet radiation datasets that cover China. Advances in Atmospheric Sciences, 2017, 34, 805-815.	1.9	20
104	Relative roles of spatial processes, natural factors and anthropogenic stressors in structuring a lake macroinvertebrate metacommunity. Science of the Total Environment, 2017, 601-602, 1702-1711.	3.9	60
105	Effects of episodic sediment resuspension on phytoplankton in Lake Taihu: focusing on photosynthesis, biomass and community composition. Aquatic Sciences, 2017, 79, 617-629.	0.6	12
106	Growth and Community Composition of Submerged Macrophytes in Lake Taihu (China): Assessment of Changes in Response to Sediment Characteristics. Wetlands, 2017, 37, 233-243.	0.7	8
107	Excitation-emission matrix fluorescence and parallel factor analyses of the effects of N and P nutrients on the extracellular polymeric substances of Microcystis aeruginosa. Limnologica, 2017, 63, 18-26.	0.7	25
108	Global loss of aquatic vegetation in lakes. Earth-Science Reviews, 2017, 173, 259-265.	4.0	249

#	Article	IF	CITATIONS
109	Whole-cell bioreporters and risk assessment of environmental pollution: A proof-of-concept study using lead. Environmental Pollution, 2017, 229, 902-910.	3.7	23
110	The sensitivity and stability of bacterioplankton community structure to wind-wave turbulence in a large, shallow, eutrophic lake. Scientific Reports, 2017, 7, 16850.	1.6	3
111	CO2 alters community composition of freshwater phytoplankton: A microcosm experiment. Science of the Total Environment, 2017, 607-608, 69-77.	3.9	26
112	Long-term nutrient trends and harmful cyanobacterial bloom potential in hypertrophic Lake Taihu, China. Hydrobiologia, 2017, 787, 229-242.	1.0	122
113	The persistence of cyanobacterial (<i>M icrocystis</i> spp.) blooms throughout winter in Lake Taihu, China. Limnology and Oceanography, 2016, 61, 711-722.	1.6	114
114	Since 2015 the SinoGerman research project SIGN supports water quality improvement in the Taihu region, China. Environmental Sciences Europe, 2016, 28, 24.	2.6	15
115	Abundance, characteristics, and size spectra of transparent exopolymer particles and Coomassie stainable particles during spring in a large shallow lake, Taihu, China. Journal of Great Lakes Research, 2016, 42, 455-463.	0.8	9
116	Turbulence increases the risk of microcystin exposure in a eutrophic lake (Lake Taihu) during cyanobacterial bloom periods. Harmful Algae, 2016, 55, 213-220.	2.2	31
117	Mitigating cyanobacterial harmful algal blooms in aquatic ecosystems impacted by climate change and anthropogenic nutrients. Harmful Algae, 2016, 54, 213-222.	2.2	453
118	Global solutions to regional problems: Collecting global expertise to address the problem of harmful cyanobacterial blooms. A Lake Erie case study. Harmful Algae, 2016, 54, 223-238.	2.2	231
119	Effects of sediment and turbulence on alkaline phosphatase activity and photosynthetic activity of phytoplankton in the shallow hyper-eutrophic Lake Taihu, China. Environmental Science and Pollution Research, 2016, 23, 16183-16193.	2.7	19
120	Effects of Nutrient on Algae Biomass during Summer and Winter in Inflow Rivers of Taihu Basin, China. Water Environment Research, 2016, 88, 665-672.	1.3	15
121	A critical review of the development, current hotspots, and future directions of Lake Taihu research from the bibliometrics perspective. Environmental Science and Pollution Research, 2016, 23, 12811-12821.	2.7	64
122	Determining critical light and hydrologic conditions for macrophyte presence in a large shallow lake: The ratio of euphotic depth to water depth. Ecological Indicators, 2016, 71, 317-326.	2.6	32
123	Meteorological and hydrological conditions driving the formation and disappearance of black blooms, an ecological disaster phenomena of eutrophication and algal blooms. Science of the Total Environment, 2016, 569-570, 1517-1529.	3.9	93
124	Aquatic vegetation in response to increased eutrophication and degraded light climate in Eastern Lake Taihu: Implications for lake ecological restoration. Scientific Reports, 2016, 6, 23867.	1.6	124
125	Characterizing cell surface of blooming Microcystis in Lake Taihu, China. Water Science and Technology, 2016, 73, 2731-2738.	1.2	14
126	In-situ erosion of cohesive sediment in a large shallow lake experiencing long-term decline in wind speed. Journal of Hydrology, 2016, 539, 254-264.	2.3	28

#	Article	IF	CITATIONS
127	Will enhanced turbulence in inland waters result in elevated production of autochthonous dissolved organic matter?. Science of the Total Environment, 2016, 543, 405-415.	3.9	27
128	Monitoring the river plume induced by heavy rainfall events in large, shallow, Lake Taihu using MODIS 250m imagery. Remote Sensing of Environment, 2016, 173, 109-121.	4.6	106
129	Response of zooplankton community to turbulence in large, shallow Lake Taihu: a mesocosm experiment. Fundamental and Applied Limnology, 2016, 187, 315-324.	0.4	17
130	Effects of the magnitude and persistence of turbulence on phytoplankton in Lake Taihu during a summer cyanobacterial bloom. Aquatic Ecology, 2016, 50, 197-208.	0.7	12
131	Phytoplankton assemblages respond differently to climate warming and eutrophication: A case study from PyhĂĦĂĦvi and Taihu. Journal of Great Lakes Research, 2016, 42, 386-396.	0.8	32
132	Estimates of long-term water total phosphorus (TP) concentrations in three large shallow lakes in the Yangtze River basin, China. Environmental Science and Pollution Research, 2016, 23, 4938-4948.	2.7	16
133	Applying remote sensing techniques to monitoring seasonal and interannual changes of aquatic vegetation in Taihu Lake, China. Ecological Indicators, 2016, 60, 503-513.	2.6	110
134	Effects of turbulence on alkaline phosphatase activity of phytoplankton and bacterioplankton in Lake Taihu. Hydrobiologia, 2016, 765, 197-207.	1.0	9
135	A Global Lake Ecological Observatory Network (GLEON) for synthesising high–frequency sensor data for validation of deterministic ecological models. Inland Waters, 2015, 5, 49-56.	1.1	62
136	Long-term changes in surface solar radiation and their effects on air temperature in the Shanghai region. International Journal of Climatology, 2015, 35, 3385-3396.	1.5	13
137	Responses of Aquatic Ecosystems to Environmental Changes in Finland and China. Frontiers in Ecology and Evolution, 2015, 3, .	1.1	7
138	The Influence of Macrophytes on Sediment Resuspension and the Effect of Associated Nutrients in a Shallow and Large Lake (Lake Taihu, China). PLoS ONE, 2015, 10, e0127915.	1.1	57
139	Mapping Aquatic Vegetation in a Large, Shallow Eutrophic Lake: A Frequency-Based Approach Using Multiple Years of MODIS Data. Remote Sensing, 2015, 7, 10295-10320.	1.8	43
140	Effects of drainage water on plant diversity and distribution of agricultural drainage ditch beds in an arid irrigated area of Northwestern China. Chemistry and Ecology, 2015, 31, 679-691.	0.6	6
141	The changing environment of Lake Taihu and its ecosystem responses. Journal of Freshwater Ecology, 2015, 30, 1-3.	0.5	22
142	Nutrient limitation dynamics examined on a multi-annual scale in Lake Taihu, China: implications for controlling eutrophication and harmful algal blooms. Journal of Freshwater Ecology, 2015, 30, 5-24.	0.5	120
143	Validating and Mapping Surface Water Temperatures in Lake Taihu: Results From MODIS Land Surface Temperature Products. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8, 1230-1244.	2.3	34
144	Cyanobacterial bloom management through integrated monitoring and forecasting in large shallow eutrophic Lake Taihu (China). Journal of Hazardous Materials, 2015, 287, 356-363.	6.5	183

#	Article	IF	CITATIONS
145	Determining the probability of cyanobacterial blooms: the application of Bayesian networks in multiple lake systems. Ecological Applications, 2015, 25, 186-199.	1.8	112
146	Green algal over cyanobacterial dominance promoted with nitrogen and phosphorus additions in a mesocosm study at Lake Taihu, China. Environmental Science and Pollution Research, 2015, 22, 5041-5049.	2.7	37
147	Multi-temporal scale characteristics of algae biomass and selected environmental parameters based on wavelet analysis in Lake Taihu, China. Hydrobiologia, 2015, 747, 189-199.	1.0	5
148	Historical trophic evolution resulting from changes in climate and ecosystem in Lake Taihu and seven other lakes, China. Journal of Freshwater Ecology, 2015, 30, 25-40.	0.5	5
149	The influence of changes in wind patterns on the areal extension of surface cyanobacterial blooms in a large shallow lake in China. Science of the Total Environment, 2015, 518-519, 24-30.	3.9	95
150	Chromophoric dissolved organic matter of black waters in a highly eutrophic Chinese lake: Freshly produced from algal scums?. Journal of Hazardous Materials, 2015, 299, 222-230.	6.5	73
151	Long-term remote monitoring of total suspended matter concentration in Lake Taihu using 250m MODIS-Aqua data. Remote Sensing of Environment, 2015, 164, 43-56.	4.6	197
152	Long-Term Satellite Observations of Microcystin Concentrations in Lake Taihu during Cyanobacterial Bloom Periods. Environmental Science & Technology, 2015, 49, 6448-6456.	4.6	116
153	Effects of wind wave turbulence on the phytoplankton community composition in large, shallow Lake Taihu. Environmental Science and Pollution Research, 2015, 22, 12737-12746.	2.7	34
154	Carbon accumulation and sequestration of lakes in China during the Holocene. Global Change Biology, 2015, 21, 4436-4448.	4.2	42
155	Controlling cyanobacterial blooms by managing nutrient ratio and limitation in a large hyper-eutrophic lake: Lake Taihu, China. Journal of Environmental Sciences, 2015, 27, 80-86.	3.2	65
156	Distribution of dissolved acidic polysaccharides (dAPS) during cyanobacteria blooms in northern Lake Taihu. Limnology, 2015, 16, 21-29.	0.8	19
157	Green algae dominance quickly switches to cyanobacteria dominance after nutrient enrichment in greenhouse with high temperature. Journal of Ecology and Environment, 2015, 38, 293-305.	1.6	5
158	Lake Topography and Wind Waves Determining Seasonal-Spatial Dynamics of Total Suspended Matter in Turbid Lake Taihu, China: Assessment Using Long-Term High-Resolution MERIS Data. PLoS ONE, 2014, 9, e98055.	1.1	60
159	Controlling Cyanobacterial Blooms in Hypertrophic Lake Taihu, China: Will Nitrogen Reductions Cause Replacement of Non-N2 Fixing by N2 Fixing Taxa?. PLoS ONE, 2014, 9, e113123.	1.1	102
160	The Potential Applications of Real-Time Monitoring of Water Quality in a Large Shallow Lake (Lake) Tj ETQq0 0 0 11580-11594.	rgBT /Ove 2.1	rlock 10 Tf 50 41
161	Absorption and fluorescence characteristics of rainwater CDOM and contribution to Lake Taihu, China. Atmospheric Environment, 2014, 98, 483-491.	1.9	53
162	Earlier and warmer springs increase cyanobacterial (<i>Microcystis</i> spp.) blooms in subtropical Lake Taihu, China. Freshwater Biology, 2014, 59, 1076-1085.	1.2	138

#	Article	IF	CITATIONS
163	Forecasting shortâ€ŧerm cyanobacterial blooms in Lake Taihu, China, using a coupled hydrodynamic–algal biomass model. Ecohydrology, 2014, 7, 794-802.	1.1	41
164	Remote sensing of diffuse attenuation coefficient of photosynthetically active radiation in Lake Taihu using MERIS data. Remote Sensing of Environment, 2014, 140, 365-377.	4.6	88
165	The role of tropical cyclones in stimulating cyanobacterial (Microcystis spp.) blooms in hypertrophic Lake Taihu, China. Harmful Algae, 2014, 39, 310-321.	2.2	118
166	Extraction and characterization of bound extracellular polymeric substances from cultured pure cyanobacterium (Microcystis wesenbergii). Journal of Environmental Sciences, 2014, 26, 1725-1732.	3.2	25
167	Submerged macrophyte communities and the controlling factors in large, shallow Lake Taihu (China): Sediment distribution and water depth. Journal of Great Lakes Research, 2014, 40, 646-655.	0.8	64
168	The responses of the taxa composition of particle-attached bacterial community to the decomposition of Microcystis blooms. Science of the Total Environment, 2014, 488-489, 236-242.	3.9	67
169	Environmental factors controlling colony formation in blooms of the cyanobacteria Microcystis spp. in Lake Taihu, China. Harmful Algae, 2014, 31, 136-142.	2.2	105
170	Low Resilience of the Particle-Attached Bacterial Community in Response to Frequent Wind-Wave Disturbance in Freshwater Mesocosms. Microbes and Environments, 2014, 29, 112-112.	0.7	0
171	Effects of Nutrients, Temperature and Their Interactions on Spring Phytoplankton Community Succession in Lake Taihu, China. PLoS ONE, 2014, 9, e113960.	1.1	76
172	A large-scale biological control experiment to improve water quality in eutrophic Lake Taihu, China. Lake and Reservoir Management, 2013, 29, 33-46.	0.4	22
173	Dynamics of cyanobacterial bloom formation during short-term hydrodynamic fluctuation in a large shallow, eutrophic, and wind-exposed Lake Taihu, China. Environmental Science and Pollution Research, 2013, 20, 8546-8556.	2.7	103
174	Influence of algal bloom degradation on nutrient release at the sediment–water interface in Lake Taihu, China. Environmental Science and Pollution Research, 2013, 20, 1803-1811.	2.7	142
175	Lake eutrophication and its ecosystem response. Science Bulletin, 2013, 58, 961-970.	1.7	236
176	Growth response of Microcystis spp. to iron enrichment in different regions of Lake Taihu, China. Hydrobiologia, 2013, 700, 187-202.	1.0	69
177	Vertical diversity of sediment bacterial communities in two different trophic states of the eutrophic Lake Taihu, China. Journal of Environmental Sciences, 2013, 25, 1186-1194.	3.2	32
178	Compositional differences of chromophoric dissolved organic matter derived from phytoplankton and macrophytes. Organic Geochemistry, 2013, 55, 26-37.	0.9	140
179	Wind and submerged aquatic vegetation influence bioâ€optical properties in large shallow Lake Taihu, China. Journal of Geophysical Research G: Biogeosciences, 2013, 118, 713-727.	1.3	52
180	Decomposition of <i>Microcystis</i> blooms: Implications for the structure of the sediment bacterial community, as assessed by a mesocosm experiment in Lake Taihu, China. Journal of Basic Microbiology, 2013, 53, 549-554.	1.8	26

#	Article	IF	CITATIONS
181	Low Resilience of the Particle-Attached Bacterial Community in Response to Frequent Wind-Wave Disturbance in Freshwater Mesocosms. Microbes and Environments, 2013, 28, 450-456.	0.7	10
182	Photobleaching Response of Different Sources of Chromophoric Dissolved Organic Matter Exposed to Natural Solar Radiation Using Absorption and Excitation–Emission Matrix Spectra. PLoS ONE, 2013, 8, e77515.	1.1	55
183	Large-scale field evidence on the enhancement of small-sized cladocerans by Microcystis blooms in Lake Taihu, China. Journal of Plankton Research, 2012, 34, 853-863.	0.8	35
184	Comparison of efficacy of two P-inactivation agents on sediments from different regions of Lake Taihu: sediment core incubations. Fundamental and Applied Limnology, 2012, 181, 271-281.	0.4	7
185	A simple optical model to estimate diffuse attenuation coefficient of photosynthetically active radiation in an extremely turbid lake from surface reflectance. Optics Express, 2012, 20, 20482.	1.7	41
186	Use of a Generalized Additive Model to Investigate Key Abiotic Factors Affecting Microcystin Cellular Quotas in Heavy Bloom Areas of Lake Taihu. PLoS ONE, 2012, 7, e32020.	1.1	44
187	Water and Sediment Quality in Lakes along the Middle and Lower Reaches of the Yangtze River, China. Water Resources Management, 2012, 26, 3601-3618.	1.9	50
188	Benthic macroinvertebrate community structure in Lake Taihu, China: Effects of trophic status, wind-induced disturbance and habitat complexity. Journal of Great Lakes Research, 2012, 38, 39-48.	0.8	83
189	Flume simulation of wave-induced release of internal dissolved nitrogen in Taihu Lake, China. Chinese Journal of Oceanology and Limnology, 2012, 30, 796-805.	0.7	10
190	Effects of typhoon Morakot on a large shallow lake ecosystem, Lake Taihu, China. Ecohydrology, 2012, 5, 798-807.	1.1	42
191	Predicting the light attenuation coefficient through Secchi disk depth and beam attenuation coefficient in a large, shallow, freshwater lake. Hydrobiologia, 2012, 693, 29-37.	1.0	33
192	Geochemical Characteristics of Amino Acids in Sediments of Lake Taihu, A Large, Shallow, Eutrophic Freshwater Lake of China. Aquatic Geochemistry, 2012, 18, 263-280.	1.5	13
193	Structural changes of the sediment bacterial community in Meiliang Bay of Lake Taihu, China, during typhoon Morakot, 2009. Journal of Basic Microbiology, 2012, 52, 99-103.	1.8	0
194	Spectral attenuation of ultraviolet and visible radiation in lakes in the Yunnan Plateau, and the middle and lower reaches of the Yangtze River, China. Photochemical and Photobiological Sciences, 2011, 10, 469-482.	1.6	45
195	Modelling the spectral absorption of tripton using exponential and hyperbolic models. International Journal of Remote Sensing, 2011, 32, 3917-3933.	1.3	1
196	Comparing sediment bacterial communities in the macrophyte-dominated and algae-dominated areas of eutrophic Lake Taihu, China. Canadian Journal of Microbiology, 2011, 57, 263-272.	0.8	50
197	Controlling harmful cyanobacterial blooms in a hyper-eutrophic lake (Lake Taihu, China): The need for a dual nutrient (N & P) management strategy. Water Research, 2011, 45, 1973-1983. 	5.3	841
198	Experimental Simulation of Microcystis Bloom Formation from Natural Phytoplankton Communities. Procedia Environmental Sciences, 2011, 10, 1534-1539.	1.3	0

#	Article	IF	CITATIONS
199	Spatial-seasonal dynamics of chromophoric dissolved organic matter in Lake Taihu, a large eutrophic, shallow lake in China. Organic Geochemistry, 2011, 42, 510-519.	0.9	99
200	Influences of habitat type and environmental variables on benthic macroinvertebrate communities in a large shallow subtropical lake (Lake Taihu, China). Annales De Limnologie, 2011, 47, 85-95.	0.6	25
201	Resolving the variability of CDOM fluorescence to differentiate the sources and fate of DOM in Lake Taihu and its tributaries. Chemosphere, 2011, 82, 145-155.	4.2	209
202	Atmospheric phosphorus in the northern part of Lake Taihu, China. Chemosphere, 2011, 84, 785-791.	4.2	30
203	A Drinking Water Crisis in Lake Taihu, China: Linkage to Climatic Variability and Lake Management. Environmental Management, 2010, 45, 105-112.	1.2	778
204	Phytoplankton community from Lake Taihu, China, has dissimilar responses to inorganic and organic nutrients. Journal of Environmental Sciences, 2010, 22, 1491-1499.	3.2	15
205	Nitrogen and phosphorus inputs control phytoplankton growth in eutrophic Lake Taihu, China. Limnology and Oceanography, 2010, 55, 420-432.	1.6	823
206	Dynamics of organicâ€aggregateâ€associated bacterial communities and related environmental factors in Lake Taihu, a large eutrophic shallow lake in China. Limnology and Oceanography, 2010, 55, 469-480.	1.6	39
207	Dynamics of organic-aggregate-associated bacterial communities and related environmental factors in Lake Taihu, a large eutrophic shallow lake in China. Limnology and Oceanography, 2010, 55, 469-480.	1.6	42
208	Modeling Remote-Sensing Reflectance and Retrieving Chlorophyll-a Concentration in Extremely Turbid Case-2 Waters (Lake Taihu, China). IEEE Transactions on Geoscience and Remote Sensing, 2009, 47, 1937-1948.	2.7	67
209	A vertically integrated eutrophication model and its application to a river-style reservoir — Fuchunjiang, China. Journal of Environmental Sciences, 2009, 21, 319-327.	3.2	13
210	Photochemical degradation of chromophoric-dissolved organic matter exposed to simulated UV-B and natural solar radiation. Hydrobiologia, 2009, 627, 159-168.	1.0	101
211	Comparative analysis of nutrients, chlorophyll and transparency in two large shallow lakes (Lake) Tj ETQq1 1 0.7	34314 rgB 1.0	T /Overlock
212	Characterization of Bacterial Communities Associated with Organic Aggregates in a Large, Shallow, Eutrophic Freshwater Lake (Lake Taihu, China). Microbial Ecology, 2009, 58, 307-322.	1.4	89
213	Solid state fermentation of aquatic macrophytes for crude protein extraction. Ecological Engineering, 2009, 35, 1668-1676.	1.6	21
214	The contribution of phytoplankton degradation to chromophoric dissolved organic matter (CDOM) in eutrophic shallow lakes: Field and experimental evidence. Water Research, 2009, 43, 4685-4697.	5.3	409
215	DNA extraction procedure affects organic-aggregate-attached bacterial community profiles from a shallow eutrophic lake. Canadian Journal of Microbiology, 2009, 55, 776-782.	0.8	6
216	Study on the Triggering Factors of Algal Bloom in Fuchunjiang Reservoir Based on a Vertically		1

Integrated Hydrodynamic Model. , 2009, , 662-666.

1

ARTICLE IF CITATIONS Characterization of depth-related microbial communities in lake sediment by denaturing gradient gel 3.2 electrophoresis of amplified 16S rRNA fragments. Journal of Environmental Sciences, 2008, 20, 224-230. Measured and numerically partitioned phytoplankton spectral absorption coefficients in inland 218 0.8 8 waters. Journal of Planktón Research, 2008, 31, 311-323. 219 Environmental issues of Lake Taihu, China., 2007, , 3-14. Seasonal and regional variations in precipitation chemistry in the Lake Taihu Basin, China. Atmospheric 220 1.9 29 Environment, 2007, 41, 2674-2679. Different competitive outcomes among four species of cladocerans under different alga combinations of colonial Microcystis spp. and green alga Scenedesmus obliquus. Hydrobiologia, 2007, 1.0 581, 209-215. Nitrogen dynamics and microbial food web structure during a summer cyanobacterial bloom in a 222 1.0 158 subtropical, shallow, well-mixed, eutrophic lake (Lake Taihu, China). Hydrobiologia, 2007, 581, 195-207. The bacterioplankton of Lake Taihu, China: abundance, biomass, and production. Hydrobiologia, 2007, 1.0 28 581, 177-188. Total inputs of phosphorus and nitrogen by wet deposition into Lake Taihu, China. Hydrobiologia, 224 1.0 53 2007, 581, 63-70. Intracellular phosphorus metabolism and growth of Microcystis aeruginosa in dark/light cycles 1.0 under various redox potential difference conditions. Hydrobiologia, 2007, 581, 167-176. Effects of hydrodynamics on phosphorus concentrations in water of Lake Taihu, a large, shallow, 226 1.0 58 eutrophic lake of China. Hydrobiologia, 2007, 581, 53-61. Chromophoric dissolved organic matter (CDOM) absorption characteristics in relation to 74 fluorescence in Lake Taihu, China, a large shallow subtropical lake. Hydrobiologia, 2007, 581, 43-52. 228 Environmental issues of Lake Taihu, China. Hydrobiologia, 2007, 581, 3-14. 1.0 835 A study of absorption characteristics of chromophoric dissolved organic matter and particles in Lake 1.0 104 Taihu, Ćhina. Hydrobiologia, 2007, 592, 105-120. Nitrogen dynamics and microbial food web structure during a summer cyanobacterial bloom in a 230 7 subtropical, shallow, well-mixed, eutrophic lake (Lake Taihu, China). , 2007, , 195-207. Effects of hydrodynamics on phosphorus concentrations in water of Lake Taihu, a large, shallow, eutrophic lake of China. , 2007, , 53-61. The role of periphytes in the shift between macrophyte and phytoplankton dominated systems in a 232 1.322 shallow, eutrophić lake (Lake Taihu, China). Science in China Séries C: Life Sciences, 2006, 49, 597-602. Temporal-spatial variations of euphotic depth of typical lake regions in Lake Taihu and its ecological 34 environmental significance. Science in China Series D: Earth Sciences, 2006, 49, 431-442. The nutrient forms, cycling and exchange flux in the sediment and overlying water system in lakes 234 from the middle and lower reaches of Yangtze River. Science in China Séries D: Earth Sciences, 2006, 0.9 46 49, 1-13.

#	Article	IF	CITATIONS
235	Phosphorus forms and bioavailability of lake sediments in the middle and lower reaches of Yangtze River. Science in China Series D: Earth Sciences, 2006, 49, 28-37.	0.9	21
236	Estimation of internal nutrient release in large shallow Lake Taihu, China. Science in China Series D: Earth Sciences, 2006, 49, 38-50.	0.9	112
237	Experimental study on phosphorus release from sediments of shallow lake in wave flume. Science in China Series D: Earth Sciences, 2006, 49, 92-101.	0.9	28
238	Effect of sediment resuspension on underwater light field in shallow lakes in the middle and lower reaches of the Yangtze River: A case study in Longgan Lake and Taihu Lake. Science in China Series D: Earth Sciences, 2006, 49, 114-125.	0.9	58
239	Wind-wave affected phosphate loading variations and their relationship to redox condition in Lake Taihu. Science in China Series D: Earth Sciences, 2006, 49, 154-161.	0.9	5
240	Alkaline phosphatase activity and the phosphorus mineralization rate of Lake Taihu. Science in China Series D: Earth Sciences, 2006, 49, 176-185.	0.9	56
241	Nutrient fluxes induced by disturbance in Meiliang Bay of Lake Taihu. Science in China Series D: Earth Sciences, 2006, 49, 186-192.	0.9	16
242	Mechanism and control of lake eutrophication. Science Bulletin, 2006, 51, 2401-2412.	1.7	86
243	Spectral Absorption and Fluorescence of Chromophoric Dissolved Organic Matter in Shallow Lakes in the Middle and Lower Reaches of the Yangtze River. Journal of Freshwater Ecology, 2005, 20, 451-459.	0.5	23
244	A Preliminary Study of Chromophoric Dissolved Organic Matter (CDOM) in Lake Taihu, a Shallow Subtropical Lake in China. Clean - Soil, Air, Water, 2005, 33, 315-323.	0.8	23
245	Direct evidence of phosphorus outbreak release from sediment to overlying water in a large shallow lake caused by strong wind wave disturbance. Science Bulletin, 2005, 50, 577-582.	1.7	43
246	Dynamics of sediment resuspension and the conceptual schema of nutrient release in the large shallow Lake Taihu, China. Science Bulletin, 2004, 49, 54.	1.7	29
247	Estimation on dynamic release of phosphorus from wind-induced suspended particulate matter in Lake Taihu. Science in China Series D: Earth Sciences, 2004, 47, 710-719.	0.9	8
248	Dynamics of sediment resuspension and the conceptual schema of nutrient release in the large shallow Lake Taihu, China. Science Bulletin, 2004, 49, 54-64.	1.7	224
249	Analysis of solar radiation variations over Nanjing region in recent 40 years. Journal of Chinese Geography, 2003, 13, 97-104.	1.5	5
250	Intracellular phosphorus metabolism of Microcystis aeruginosa under various redox potential in darkness. Microbiological Research, 2003, 158, 345-352.	2.5	36
251	Title is missing!. Climatic Change, 1998, 39, 695-714.	1.7	60
252	The reconstruction and interpretations of lake status at 6 ka and 18 ka B.P.in inland mainland Asia. Science Bulletin, 1998, 43, 1145-1157.	1.7	8

#	Article	IF	CITATIONS
253	Pollen-based reconstruction of vegetation patterns of China in mid-Holocene. Science in China Series D: Earth Sciences, 1998, 41, 130-136.	0.9	9
254	Evaluation of modelled regional water balance using lake status data. Quaternary Science Reviews, 1998, 17, 535-548.	1.4	36
255	Implications of lake level variations at 6 ka and 18 ka in mainland Asia. Global and Planetary Change, 1998, 18, 59-72.	1.6	64
256	The relationship between inland lakes evolution and climatic fluctuation in arid zone. Chinese Geographical Science, 1991, 1, 316-323.	1.2	1