Olivera MitrovićAjtić

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9085237/publications.pdf

Version: 2024-02-01

23 213 7 14 papers citations h-index g-index

23 23 23 23 416

times ranked

citing authors

docs citations

all docs

#	Article	IF	Citations
1	Inflammation Promotes Oxidative and Nitrosative Stress in Chronic Myelogenous Leukemia. Biomolecules, 2022, 12, 247.	4.0	2
2	Inhibition of proinflammatory signaling impairs fibrosis of bone marrow mesenchymal stromal cells in myeloproliferative neoplasms. Experimental and Molecular Medicine, 2022, 54, 273-284.	7.7	3
3	Regulation of S100As Expression by Inflammatory Cytokines in Chronic Lymphocytic Leukemia. International Journal of Molecular Sciences, 2022, 23, 6952.	4.1	2
4	Biocompatibility Study of a New Dental Cement Based on Hydroxyapatite and Calcium Silicates: Focus on Liver, Kidney, and Spleen Tissue Effects. International Journal of Molecular Sciences, 2021, 22, 5468.	4.1	0
5	VEGF Regulation of Angiogenic Factors via Inflammatory Signaling in Myeloproliferative Neoplasms. International Journal of Molecular Sciences, 2021, 22, 6671.	4.1	8
6	Nitric Oxide Synthase Dependency in Hydroxyurea Inhibition of Erythroid Progenitor Growth. Genes, 2021, 12, 1145.	2.4	3
7	Nitric Oxide Mediation in Hydroxyurea and Nitric Oxide Metabolites' Inhibition of Erythroid Progenitor Growth. Biomolecules, 2021, 11, 1562.	4.0	1
8	Hydroxyurea Induces Bone Marrow Mesenchymal Stromal Cells Senescence and Modifies Cell Functionality In Vitro. Journal of Personalized Medicine, 2021, 11, 1048.	2.5	2
9	IL6 inhibition of inflammatory S100A8/9 proteins is NFâ€₽B mediated in essential thrombocythemia. Cell Biochemistry and Function, 2020, 38, 362-372.	2.9	9
10	Toxicological Profile of Nanostructured Bone Substitute Based on Hydroxyapatite and Poly(lactide-co-glycolide) after Subchronic Oral Exposure of Rats. Nanomaterials, 2020, 10, 918.	4.1	4
11	Nitric oxide-dependent expansion of erythroid progenitors in a murine model of chronic psychological stress. Histochemistry and Cell Biology, 2020, 153, 457-468.	1.7	4
12	Hydroxyureaâ€induced senescent peripheral blood mesenchymal stromal cells inhibit bystander cell proliferation of JAK2V617Fâ€positive human erythroleukemia cells. FEBS Journal, 2019, 286, 3647-3663.	4.7	8
13	ILâ€6 stimulation of DNA replication is JAK1/2 mediated in crossâ€ŧalk with hyperactivated ERK1/2 signaling. Cell Biology International, 2019, 43, 192-206.	3.0	4
14	\hat{l}^2 -catenin and PPAR- \hat{l}^3 levels in bone marrow of myeloproliferative neoplasm: an immunohistochemical and ultrastructural study. Ultrastructural Pathology, 2018, 42, 498-507.	0.9	1
15	TLR4 and RAGE conversely mediate pro-inflammatory \$100A8/9-mediated inhibition of proliferation-linked signaling in myeloproliferative neoplasms. Cellular Oncology (Dordrecht), 2018, 41, 541-553.	4.4	37
16	Oxidative and nitrosative stress in myeloproliferative neoplasms: the impact on the AKT / mTOR signaling pathway. Journal of B U on, 2018, 23, 1481-1491.	0.4	5
17	Angiogenic factors are increased in circulating granulocytes and CD34 ⁺ cells of myeloproliferative neoplasms. Molecular Carcinogenesis, 2017, 56, 567-579.	2.7	9
18	Bone marrow microvessel density and plasma angiogenic factors in myeloproliferative neoplasms: clinicopathological and molecular correlations. Annals of Hematology, 2017, 96, 393-404.	1.8	18

#	Article	IF	CITATIONS
19	Macrophage migration inhibitory factor is an endogenous regulator of stress-induced extramedullary erythropoiesis. Histochemistry and Cell Biology, 2016, 146, 311-324.	1.7	7
20	Proliferation and differentiation markers of colorectal adenocarcinomaand their correlation with clinicopathological factors. Turkish Journal of Medical Sciences, 2016, 46, 1168-1176.	0.9	4
21	Predictors of survival and cause of death in patients with essential thrombocythemia. European Journal of Haematology, 2015, 95, 461-466.	2.2	12
22	Proinflammatory Cytokine IL-6 and JAK-STAT Signaling Pathway in Myeloproliferative Neoplasms. Mediators of Inflammation, 2015, 2015, 1-13.	3.0	58
23	Gene expression profile of circulating CD34+ cells and granulocytes in chronic myeloid leukemia. Blood Cells, Molecules, and Diseases, 2015, 55, 373-381.	1.4	12