Charles L Sentman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9084902/publications.pdf

Version: 2024-02-01

126907 175258 3,347 55 33 52 h-index citations g-index papers 57 57 57 3873 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Engineering a natural ligand-based CAR: directed evolution of the stress-receptor NKp30. Cancer Immunology, Immunotherapy, 2022, 71, 165-176.	4.2	10
2	Superkine IL-2 and IL-33 Armored CAR T Cells Reshape the Tumor Microenvironment and Reduce Growth of Multiple Solid Tumors. Cancer Immunology Research, 2022, 10, 962-977.	3.4	12
3	Toxicity Induced by a Bispecific T Cell–Redirecting Protein Is Mediated by Both T Cells and Myeloid Cells in Immunocompetent Mice. Journal of Immunology, 2020, 204, 2973-2983.	0.8	14
4	A Chimeric Antigen Receptor That Binds to a Conserved Site on MICA. ImmunoHorizons, 2020, 4, 597-607.	1.8	4
5	IMMU-17. TARGETING GLIOBLASTOMA WITH DNAM-1-BASED CHIMERIC ANTIGEN RECEPTOR (CAR) T CELLS. Neuro-Oncology, 2019, 21, vi122-vi122.	1.2	О
6	Phase I Trial of Autologous CAR T Cells Targeting NKG2D Ligands in Patients with AML/MDS and Multiple Myeloma. Cancer Immunology Research, 2019, 7, 100-112.	3.4	220
7	Advances in the use of natural receptor- or ligand-based chimeric antigen receptors (CARs) in haematologic malignancies. Best Practice and Research in Clinical Haematology, 2018, 31, 176-183.	1.7	25
8	NKG2D-Based CAR T Cells and Radiotherapy Exert Synergistic Efficacy in Glioblastoma. Cancer Research, 2018, 78, 1031-1043.	0.9	193
9	Manufacturing development and clinical production of NKG2D chimeric antigen receptor–expressing T cells for autologous adoptive cell therapy. Cytotherapy, 2018, 20, 952-963.	0.7	49
10	NKG2D Ligand–Targeted Bispecific T-Cell Engagers Lead to Robust Antitumor Activity against Diverse Human Tumors. Molecular Cancer Therapeutics, 2017, 16, 1335-1346.	4.1	17
11	Exploiting natural killer group 2D receptors for CAR T-cell therapy. Future Oncology, 2017, 13, 1593-1605.	2.4	46
12	Development of unique cytotoxic chimeric antigen receptors based on human scFv targeting B7H6. Protein Engineering, Design and Selection, 2017, 30, 713-721.	2.1	14
13	Preclinical Studies in CAR T Cell Development. Clinical Lymphoma, Myeloma and Leukemia, 2017, 17, S205-S207.	0.4	O
14	Computationally-driven identification of antibody epitopes. ELife, 2017, 6, .	6.0	37
15	How Chimeric Antigen Receptor Design Affects Adoptive T Cell Therapy. Journal of Cellular Physiology, 2016, 231, 2590-2598.	4.1	28
16	Mechanisms of Acute Toxicity in NKG2D Chimeric Antigen Receptor T Cell–Treated Mice. Journal of Immunology, 2016, 197, 4674-4685.	0.8	50
17	Designing multivalent proteins based on natural killer cell receptors and their ligands as immunotherapy for cancer. Expert Opinion on Biological Therapy, 2016, 16, 1105-1112.	3.1	5
18	Bispecific T-Cell Engagers (BiTEs) as Treatment of B-Cell Lymphoma. Journal of Clinical Oncology, 2016, 34, 1131-1133.	1.6	37

#	Article	IF	Citations
19	DNAM-1-based chimeric antigen receptors enhance T cell effector function and exhibit in vivo efficacy against melanoma. Cancer Immunology, Immunotherapy, 2015, 64, 409-418.	4.2	32
20	B7H6-Specific Bispecific T Cell Engagers Lead to Tumor Elimination and Host Antitumor Immunity. Journal of Immunology, 2015, 194, 5305-5311.	0.8	55
21	Antibody humanization by structure-based computational protein design. MAbs, 2015, 7, 1045-1057.	5.2	58
22	Bispecific Tâ€cell engagers for cancer immunotherapy. Immunology and Cell Biology, 2015, 93, 290-296.	2.3	279
23	NKG2D CARs as Cell Therapy for Cancer. Cancer Journal (Sudbury, Mass), 2014, 20, 156-159.	2.0	85
24	NKG2D CAR Tâ€eell therapy inhibits the growth of NKG2D ligand heterogeneous tumors. Immunology and Cell Biology, 2013, 91, 435-440.	2.3	57
25	Challenges of creating effective chimeric antigen receptors for cancer therapy. Immunotherapy, 2013, 5, 783-785.	2.0	4
26	Collaboration of chimeric antigen receptor (CAR)-expressing T cells and host T cells for optimal elimination of established ovarian tumors. Oncolmmunology, 2013, 2, e23564.	4.6	45
27	Mouse Tumor Vasculature Expresses NKG2D Ligands and Can Be Targeted by Chimeric NKG2D-Modified T Cells. Journal of Immunology, 2013, 190, 2455-2463.	0.8	40
28	NKG2D ligands as therapeutic targets. Cancer Immunity, 2013, 13, 8.	3.2	168
29	An NKp30-Based Chimeric Antigen Receptor Promotes T Cell Effector Functions and Antitumor Efficacy In Vivo. Journal of Immunology, 2012, 189, 2290-2299.	0.8	106
30	Chimeric Antigen Receptor T Cells Shape Myeloid Cell Function within the Tumor Microenvironment through IFN- \hat{l}^3 and GM-CSF. Journal of Immunology, 2012, 188, 6389-6398.	0.8	92
31	Cancer Immunotherapy Using a Bispecific NK Receptor Fusion Protein that Engages both T Cells and Tumor Cells. Cancer Research, 2011, 71, 2066-2076.	0.9	56
32	Chimeric NKG2D T Cells Require Both T Cell- and Host-Derived Cytokine Secretion and Perforin Expression to Increase Tumor Antigen Presentation and Systemic Immunity. Journal of Immunology, 2009, 183, 2365-2372.	0.8	34
33	Chimeric NKG2D Expressing T Cells Eliminate Immunosuppression and Activate Immunity within the Ovarian Tumor Microenvironment. Journal of Immunology, 2009, 183, 6939-6947.	0.8	85
34	Ly49G2 receptor blockade reduces tumor burden in a leukemia model but not in a solid tumor model. Cancer Immunology, Immunotherapy, 2008, 57, 655-662.	4.2	6
35	Chimeric NKG2D receptor–expressing T cells as an immunotherapy for multiple myeloma. Experimental Hematology, 2008, 36, 1318-1328.	0.4	77
36	Depletion of Dendritic Cells Delays Ovarian Cancer Progression by Boosting Antitumor Immunity. Cancer Research, 2008, 68, 7684-7691.	0.9	105

#	Article	IF	CITATIONS
37	Immunotherapy with Chimeric NKG2D Receptors Leads to Long-Term Tumor-Free Survival and Development of Host Antitumor Immunity in Murine Ovarian Cancer. Journal of Immunology, 2008, 180, 72-78.	0.8	76
38	Innate and adaptive immunity in the human female reproductive tract: influence of the menstrual cycle and menopause on the mucosal immune system in the uterus. Reproductive Medicine and Assisted Reproductive Techniques Series, 2008, , 493-523.	0.1	3
39	Chimeric NKG2D receptor expressing T cells require host immune cells for antiâ€tumor efficacy. FASEB Journal, 2008, 22, 1076.10.	0.5	0
40	Chimeric NKG2D–Modified T Cells Inhibit Systemic T-Cell Lymphoma Growth in a Manner Involving Multiple Cytokines and Cytotoxic Pathways. Cancer Research, 2007, 67, 11029-11036.	0.9	81
41	Chimeric NKG2D Receptor–Bearing T Cells as Immunotherapy for Ovarian Cancer. Cancer Research, 2007, 67, 5003-5008.	0.9	96
42	NK Cell Function in the Human Female Reproductive Tract. American Journal of Reproductive Immunology, 2007, 57, 108-115.	1.2	20
43	NK cells rapidly remove B16F10 tumor cells in a perforin and interferon-gamma independent manner in vivo. Cancer Immunology, Immunotherapy, 2007, 56, 1153-1161.	4.2	49
44	NK Cell Receptors as Tools in Cancer Immunotherapy. Advances in Cancer Research, 2006, 95, 249-292.	5.0	46
45	Immunodeficient mice have elevated numbers of NK cells in non-lymphoid tissues. Experimental Cell Research, 2006, 312, 3920-3926.	2.6	20
46	Human NK cell IFN- \hat{l}^3 production is regulated by endogenous TGF- \hat{l}^2 . International Immunopharmacology, 2006, 6, 1020-1028.	3.8	40
47	Generation of Antitumor Responses by Genetic Modification of Primary Human T Cells with a Chimeric NKG2D Receptor. Cancer Research, 2006, 66, 5927-5933.	0.9	120
48	TLRs Mediate IFN- $\hat{1}^3$ Production by Human Uterine NK Cells in Endometrium. Journal of Immunology, 2006, 176, 6219-6224.	0.8	75
49	Chimeric NK-receptor–bearing T cells mediate antitumor immunotherapy. Blood, 2005, 106, 1544-1551.	1.4	138
50	GFP transgenic mice show dynamics of lung macrophages. Experimental Cell Research, 2005, 310, 409-416.	2.6	11
51	Unique phenotype of human uterine NK cells and their regulation by endogenous TGF-β. Journal of Leukocyte Biology, 2004, 76, 667-675.	3.3	130
52	Recruitment of Uterine NK Cells: Induction of CXC Chemokine Ligands 10 and 11 in Human Endometrium by Estradiol and Progesterone. Journal of Immunology, 2004, 173, 6760-6766.	0.8	147
53	MHC Class I-Ly49 Interactions Shape the Ly49 Repertoire on Murine NK Cells. Journal of Immunology, 2001, 166, 6585-6592.	0.8	37
54	Ly49A expression on T cells alters T cell selection. International Immunology, 2000, 12, 215-222.	4.0	30

#	Article	IF	CITATIONS
55	Inhibitory Receptors Alter Natural Killer Cell Interactions with Target Cells Yet Allow Simultaneous Killing of Susceptible Targets. Journal of Experimental Medicine, 1999, 190, 1005-1012.	8.5	82