List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9084745/publications.pdf Version: 2024-02-01

87886 138468 4,591 168 38 58 h-index citations g-index papers 169 169 169 2091 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Foundations of offshore wind turbines: A review. Renewable and Sustainable Energy Reviews, 2019, 104, 379-393.	16.4	270
2	Fatigue reliability analysis of the jacket support structure for offshore wind turbine considering the effect of corrosion and inspection. Reliability Engineering and System Safety, 2012, 106, 11-27.	8.9	139
3	On long-term fatigue damage and reliability analysis of gears under wind loads in offshore wind turbine drivetrains. International Journal of Fatigue, 2014, 61, 116-128.	5.7	127
4	Long-term fatigue analysis of multi-planar tubular joints for jacket-type offshore wind turbine in time domain. Engineering Structures, 2011, 33, 2002-2014.	5.3	111
5	Extreme responses of a combined spar-type floating wind turbine and floating wave energy converter (STC) system with survival modes. Ocean Engineering, 2013, 65, 71-82.	4.3	108
6	Model-based fault detection, fault isolation and fault-tolerant control of a blade pitch system in floating wind turbines. Renewable Energy, 2018, 120, 306-321.	8.9	101
7	Experimental and numerical study of hydrodynamic responses of a combined wind and wave energy converter concept in survival modes. Coastal Engineering, 2015, 104, 151-169.	4.0	100
8	Frequency-domain fatigue analysis of wide-band stationary Gaussian processes using a trimodal spectral formulation. International Journal of Fatigue, 2008, 30, 1944-1955.	5.7	86
9	Joint Distribution of Environmental Condition at Five European Offshore Sites for Design of Combined Wind and Wave Energy Devices. Journal of Offshore Mechanics and Arctic Engineering, 2015, 137, .	1.2	85
10	Fault detection and diagnosis of a blade pitch system in a floating wind turbine based on Kalman filters and artificial neural networks. Renewable Energy, 2021, 169, 1-13.	8.9	85
11	Structural Reliability Analysis of Wind Turbines: A Review. Energies, 2017, 10, 2099.	3.1	80
12	Time domain-based gear contact fatigue analysis of a wind turbine drivetrain under dynamic conditions. International Journal of Fatigue, 2013, 48, 133-146.	5.7	76
13	Comparative numerical and experimental study of two combined wind and wave energy concepts. Journal of Ocean Engineering and Science, 2016, 1, 36-51.	4.3	76
14	Experimental and numerical study of the response of the offshore combined wind/wave energy concept SFC in extreme environmental conditions. Marine Structures, 2016, 50, 35-54.	3.8	74
15	Experimental study of the functionality of a semisubmersible wind turbine combined with flap-type Wave Energy Converters. Renewable Energy, 2016, 93, 675-690.	8.9	74
16	Uncertainty of wave-induced response of marine structures due to long-term variation of extratropical wave conditions. Marine Structures, 2005, 18, 359-382.	3.8	71
17	Hydroelastic code-to-code comparison for a tension leg spar-type floating wind turbine. Marine Structures, 2011, 24, 412-435.	3.8	69
18	Development of a 5 MW reference gearbox for offshore wind turbines. Wind Energy, 2016, 19, 1089-1106.	4.2	61

#	Article	IF	CITATIONS
19	Methodology for assessment of the operational limits and operability of marine operations. Ocean Engineering, 2016, 125, 308-327.	4.3	60
20	Experimental and numerical comparisons of hydrodynamic responses for a combined wind and wave energy converter concept under operational conditions. Renewable Energy, 2016, 93, 87-100.	8.9	59
21	Hydrodynamic load modeling and analysis of a floating bridge in homogeneous wave conditions. Marine Structures, 2018, 59, 122-141.	3.8	58
22	Fatigue damage induced by nonGaussian bimodal wave loading in mooring lines. Applied Ocean Research, 2007, 29, 45-54.	4.1	57
23	A fully coupled method for numerical modeling and dynamic analysis of floating vertical axis wind turbines. Renewable Energy, 2017, 107, 604-619.	8.9	57
24	Effect of the number of blades on the dynamics of floating straight-bladed vertical axis wind turbines. Renewable Energy, 2017, 101, 1285-1298.	8.9	55
25	Modified environmental contour method for predicting long-term extreme responses of bottom-fixed offshore wind turbines. Marine Structures, 2016, 48, 15-32.	3.8	54
26	A comparison of extreme structural responses and fatigue damage of semi-submersible type floating horizontal and vertical axis wind turbines. Renewable Energy, 2017, 108, 207-219.	8.9	54
27	Stochastic dynamic load effect and fatigue damage analysis of drivetrains in land-based and TLP, spar and semi-submersible floating wind turbines. Marine Structures, 2015, 42, 137-153.	3.8	53
28	A prognostic method for fault detection in wind turbine drivetrains. Engineering Failure Analysis, 2014, 42, 324-336.	4.0	52
29	Wave load effect analysis of a floating bridge in a fjord considering inhomogeneous wave conditions. Engineering Structures, 2018, 163, 197-214.	5.3	52
30	Comparison of wave load effects on a TLP wind turbine by using computational fluid dynamics and potential flow theory approaches. Applied Ocean Research, 2015, 53, 142-154.	4.1	50
31	Comparative experimental study of the survivability of a combined wind and wave energy converter in two testing facilities. Ocean Engineering, 2016, 111, 82-94.	4.3	50
32	Joint Environmental Data at Five European Offshore Sites for Design of Combined Wind and Wave Energy Devices. , 2013, , .		46
33	Shortâ€ŧerm extreme response analysis of a jacket supporting an offshore wind turbine. Wind Energy, 2014, 17, 87-104.	4.2	46
34	Fatigue Reliability-based Inspection and Maintenance Planning of Gearbox Components in Wind Turbine Drivetrains. Energy Procedia, 2014, 53, 248-257.	1.8	45
35	Application of the Contour Line Method for Estimating Extreme Responses in the Mooring Lines of a Two-Body Floating Wave Energy Converter. Journal of Offshore Mechanics and Arctic Engineering, 2013, 135, .	1.2	43
36	Numerical study of ice-induced loads and responses of a monopile-type offshore wind turbine in parked and operating conditions. Cold Regions Science and Technology, 2016, 123, 121-139.	3.5	43

#	Article	IF	CITATIONS
37	Longâ€ŧerm contact fatigue analysis of a planetary bearing in a landâ€based wind turbine drivetrain. Wind Energy, 2015, 18, 591-611.	4.2	42
38	Effects of floating sun gear in a wind turbine's planetary gearbox with geometrical imperfections. Wind Energy, 2015, 18, 2105-2120.	4.2	41
39	Development and verification of a time-domain approach for determining forces and moments in structural components of floaters with an application to floating wind turbines. Marine Structures, 2017, 51, 87-109.	3.8	41
40	Dynamic response analysis of a catamaran installation vessel during the positioning of a wind turbine assembly onto a spar foundation. Marine Structures, 2018, 61, 1-24.	3.8	41
41	The surface wave effects on the performance and the loading of a tidal turbine. Ocean Engineering, 2018, 156, 120-134.	4.3	40
42	Corrosion of working chains continuously immersed in seawater. Journal of Marine Science and Technology, 2007, 12, 102-110.	2.9	39
43	On the sensitivity and uncertainty of wave energy conversion with an artificial neural-network-based controller. Ocean Engineering, 2019, 183, 282-293.	4.3	39
44	A parametric study on the final blade installation process for monopile wind turbines under rough environmental conditions. Engineering Structures, 2018, 172, 1042-1056.	5.3	38
45	An integrated dynamic analysis method for simulating installation of single blades for wind turbines. Ocean Engineering, 2018, 152, 72-88.	4.3	37
46	Impact assessment of a wind turbine blade root during an offshore mating process. Engineering Structures, 2019, 180, 205-222.	5.3	37
47	Analysis of lifting operation of a monopile for an offshore wind turbine considering vessel shielding effects. Marine Structures, 2014, 39, 287-314.	3.8	36
48	A combined wind and wave energy-converter concept in survival mode: Numerical and experimental study in regular waves with a focus on water entry and exit. Applied Ocean Research, 2017, 63, 200-216.	4.1	35
49	Development and application of a simulator for offshore wind turbine blades installation. Ocean Engineering, 2018, 166, 380-395.	4.3	35
50	Numerical Simulation of a Wind Turbine with a Hydraulic Transmission System. Energy Procedia, 2014, 53, 44-55.	1.8	34
51	Analysis of a Two-Body Floating Wave Energy Converter With Particular Focus on the Effects of Power Take-Off and Mooring Systems on Energy Capture. Journal of Offshore Mechanics and Arctic Engineering, 2013, 135, .	1.2	31
52	Integrated GNSS/IMU hub motion estimator for offshore wind turbine blade installation. Mechanical Systems and Signal Processing, 2019, 123, 222-243.	8.0	31
53	A study on fully nonlinear wave load effects on floating wind turbine. Journal of Fluids and Structures, 2019, 88, 216-240.	3.4	31
54	Comparison of numerical modelling techniques for impact investigation on a wind turbine blade. Composite Structures, 2019, 209, 856-878.	5.8	30

#	Article	IF	CITATIONS
55	Experimental study of vortex-induced vibration of a twin-tube submerged floating tunnel segment model. Journal of Fluids and Structures, 2020, 94, 102908.	3.4	30
56	Active heave compensation of floating wind turbine installation using a catamaran construction vessel. Marine Structures, 2021, 75, 102868.	3.8	29
57	Long-term performance estimation of the Spar–Torus-Combination (STC) system with different survival modes. Ocean Engineering, 2015, 108, 716-728.	4.3	28
58	Aerodynamic Modeling of Floating Vertical Axis Wind Turbines Using the Actuator Cylinder Flow Method. Energy Procedia, 2016, 94, 531-543.	1.8	27
59	STC (Spar-Torus Combination): A Combined Spar-Type Floating Wind Turbine and Large Point Absorber Floating Wave Energy Converter — Promising and Challenging. , 2012, , .		26
60	A Crane Overload Protection Controller for Blade Lifting Operation Based on Model Predictive Control. Energies, 2019, 12, 50.	3.1	26
61	A comprehensive numerical investigation of the impact behaviour of an offshore wind turbine blade due to impact loads during installation. Ocean Engineering, 2019, 172, 127-145.	4.3	26
62	Model Test and Numerical Analysis of a Multi-Pile Offshore Wind Turbine Under Seismic, Wind, Wave, and Current Loads. Journal of Offshore Mechanics and Arctic Engineering, 2017, 139, .	1.2	25
63	Effect of wave nonlinearity on fatigue damage and extreme responses of a semi-submersible floating wind turbine. Applied Ocean Research, 2019, 91, 101879.	4.1	25
64	A comparative study on dynamic responses of sparâ€ŧype floating horizontal and vertical axis wind turbines. Wind Energy, 2017, 20, 305-323.	4.2	24
65	Numerical modeling and analysis of the dynamic motion response of an offshore wind turbine blade during installation by a jack-up crane vessel. Ocean Engineering, 2018, 165, 353-364.	4.3	24
66	Prediction of short-term wind and wave conditions for marine operations using a multi-step-ahead decomposition-ANFIS model and quantification of its uncertainty. Ocean Engineering, 2019, 188, 106300.	4.3	24
67	Active tugger line force control for single blade installation. Wind Energy, 2018, 21, 1344-1358.	4.2	23
68	Effects of a passive tuned mass damper on blade root impacts during the offshore mating process. Marine Structures, 2020, 72, 102778.	3.8	23
69	Long-term Analysis of Gear Loads in Fixed Offshore Wind Turbines Considering Ultimate Operational Loadings. Energy Procedia, 2013, 35, 187-197.	1.8	22
70	Modified environmental contour method to determine the long-term extreme responses of a semi-submersible wind turbine. Ocean Engineering, 2017, 142, 563-576.	4.3	22
71	Numerical Modeling and Dynamic Analysis of a Floating Bridge Subjected to Wind, Wave, and Current Loads. Journal of Offshore Mechanics and Arctic Engineering, 2019, 141,	1.2	22
72	A Comparative Study of Shutdown Procedures on the Dynamic Responses of Wind Turbines. Journal of Offshore Mechanics and Arctic Engineering, 2015, 137, .	1.2	21

#	Article	IF	CITATIONS
73	Multi-Step-Ahead Forecasting of Wave Conditions Based on a Physics-Based Machine Learning (PBML) Model for Marine Operations. Journal of Marine Science and Engineering, 2020, 8, 992.	2.6	21
74	Design and Analysis of a Braceless Steel 5-MW Semi-Submersible Wind Turbine. , 2016, , .		20
75	Statistical fault diagnosis of wind turbine drivetrain applied to a 5MW floating wind turbine. Journal of Physics: Conference Series, 2016, 753, 052017.	0.4	20
76	Response-Based Assessment of Operational Limits for Mating Blades on Monopile-Type Offshore Wind Turbines. Energies, 2019, 12, 1867.	3.1	20
77	Field Measurements of Inhomogeneous Wave Conditions in BjÃ,rnafjorden. Journal of Waterway, Port, Coastal and Ocean Engineering, 2019, 145, .	1.2	20
78	Effect of Flap Type Wave Energy Converters on the Response of a Semi-Submersible Wind Turbine in Operational Conditions. , 2014, , .		19
79	Experimental validation of a time-domain approach for determining sectional loads in a floating wind turbine hull subjected to moderate waves. Energy Procedia, 2017, 137, 366-381.	1.8	19
80	Numerical study on the feasibility of offshore single blade installation by floating crane vessels. Marine Structures, 2019, 64, 442-462.	3.8	19
81	Assessment of Allowable Sea States During Installation of Offshore Wind Turbine Monopiles With Shallow Penetration in the Seabed. Journal of Offshore Mechanics and Arctic Engineering, 2016, 138, .	1.2	18
82	Condition monitoring of sparâ€type floating wind turbine drivetrain using statistical fault diagnosis. Wind Energy, 2018, 21, 575-589.	4.2	18
83	Long-term joint distribution of environmental conditions in a Norwegian fjord for design of floating bridges. Ocean Engineering, 2019, 191, 106472.	4.3	18
84	Operability Analysis of Monopile Lowering Operation Using Different Numerical Approaches. International Journal of Offshore and Polar Engineering, 2016, 26, 88-99.	0.8	18
85	Numerical simulation of wave-induced hydroelastic response and flow-induced vibration of a twin-tube submerged floating tunnel. Marine Structures, 2022, 82, 103124.	3.8	18
86	Response Analysis of a Nonstationary Lowering Operation for an Offshore Wind Turbine Monopile Substructure. Journal of Offshore Mechanics and Arctic Engineering, 2015, 137, .	1.2	17
87	Modeling and Analysis of a 5 MW Semi-Submersible Wind Turbine Combined With Three Flap-Type Wave Energy Converters. , 2014, , .		16
88	Design, modelling, and analysis of a large floating dock for spar floating wind turbine installation. Marine Structures, 2020, 72, 102781.	3.8	16
89	Recent Advances in Integrated Response Analysis of Floating Wind Turbines in a Reliability Perspective. Journal of Offshore Mechanics and Arctic Engineering, 2020, 142,	1.2	16
90	Response analysis and comparison of a spar-type floating offshore wind turbine and an onshore wind turbine under blade pitch controller faults. Wind Energy, 2016, 19, 35-50.	4.2	15

#	Article	IF	CITATIONS
91	Methodology for Assessment of the Allowable Sea States During Installation of an Offshore Wind Turbine Transition Piece Structure Onto a Monopile Foundation. Journal of Offshore Mechanics and Arctic Engineering, 2017, 139, .	1.2	15
92	Assessment of the Dynamic Responses and Allowable Sea States for a Novel Offshore Wind Turbine Installation Concept Based on the Inverted Pendulum Principle. Energy Procedia, 2016, 94, 61-71.	1.8	14
93	Risk Assessment and Reduction for an Innovative Subsurface Well Completion System. Energies, 2018, 11, 1306.	3.1	14
94	Comparative analysis of numerically simulated and experimentally measured motions and sectional forces and moments in a floating wind turbine hull structure subjected to combined wind and wave loads. Engineering Structures, 2018, 177, 210-233.	5.3	14
95	Structural reliability analysis of contact fatigue design of gears in wind turbine drivetrains. Journal of Loss Prevention in the Process Industries, 2020, 65, 104115.	3.3	14
96	Dynamic Response Analysis of Three Floating Wind Turbine Concepts with a Two-Bladed Darrieus Rotor. Journal of Ocean and Wind Energy, 2015, 2, .	0.7	14
97	Extreme responses and associated uncertainties for a long end-anchored floating bridge. Engineering Structures, 2020, 219, 110858.	5.3	13
98	Comparative study of short-term extreme responses and fatigue damages of a floating wind turbine using two different blade models. Applied Ocean Research, 2020, 97, 102088.	4.1	13
99	Small scale experimental validation of a numerical model of the HarshLab2.0 floating platform coupled with a non-linear lumped mass catenary mooring system. Ocean Engineering, 2020, 200, 107036.	4.3	13
100	Fatigue Damage Comparison of Mechanical Components in a Land-based and a Spar Floating Wind Turbine. Procedia Engineering, 2015, 101, 330-338.	1.2	12
101	Experimental study on the drag forces on a twin-tube submerged floating tunnel segment model in current. Applied Ocean Research, 2020, 104, 102326.	4.1	12
102	Numerical study on aerodynamic damping of floating vertical axis wind turbines. Journal of Physics: Conference Series, 2016, 753, 102001.	0.4	11
103	Numerical study of a novel procedure for installing the tower and Rotor Nacelle Assembly of offshore wind turbines based on the inverted pendulum principle. Journal of Marine Science and Application, 2017, 16, 243-260.	1.7	11
104	Numerical modeling of the hydraulic blade pitch actuator in a sparâ€ŧype floating wind turbine considering fault conditions and their effects on global dynamic responses. Wind Energy, 2020, 23, 370-390.	4.2	11
105	Assessment of inhomogeneity in environmental conditions in a Norwegian fjord for design of floating bridges. Ocean Engineering, 2021, 220, 108474.	4.3	11
106	Drivetrain load effects in a 5-MW bottom-fixed wind turbine under blade-pitch fault condition and emergency shutdown. Journal of Physics: Conference Series, 2016, 753, 112011.	0.4	11
107	A 5MW direct-drive generator for floating spar-buoy wind turbine: Development and analysis of a fully coupled Mechanical model. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2014, 228, 718-741.	1.4	10
108	A 5 MW direct-drive generator for floating spar-buoy wind turbine: Drive-train dynamics. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2017, 231, 744-763.	2.1	10

#	Article	IF	CITATIONS
109	Model Test of the STC Concept in Survival Modes. , 2014, , .		9
110	Analysis of a Two-Body Floating Wave Energy Converter With Particular Focus on the Effects of Power Take Off and Mooring Systems on Energy Capture. , 2011, , .		8
111	Efficient determination of the long-term extreme responses by the modified environmental contour method for a combined wind turbine and wave energy converter system. Journal of Ocean Engineering and Marine Energy, 2018, 4, 123-135.	1.7	8
112	Frequency domain modelling of a coupled system of floating structure and mooring Lines: An application to a wave energy converter. Ocean Engineering, 2021, 220, 108498.	4.3	8
113	Maximization of wave power extraction of a heave point absorber with a sea-state-based causal control algorithm. Energy, 2020, 204, 117881.	8.8	8
114	Short-Term Fatigue Analysis of Semi-Submersible Wind Turbine Tower. , 2011, , .		7
115	Diagnostic monitoring of drivetrain in a 5 MW spar-type floating wind turbine using Hilbert spectral analysis. Energy Procedia, 2017, 137, 204-213.	1.8	7
116	Methodology for developing a response-based correction factor (alpha-factor) for allowable sea state assessment of marine operations considering weather forecast uncertainty. Marine Structures, 2021, 79, 103050.	3.8	7
117	Analysis of Lifting Operation of a Monopile Considering Vessel Shielding Effects in Short-crested Waves. International Journal of Offshore and Polar Engineering, 2016, 26, 408-416.	0.8	7
118	Wave-Induced Fatigue Damage of Mooring Chain Under Combined Non-Gaussian Low and Wave Frequency Loads. , 2006, , 203.		6
119	Fatigue Reliability of Catenary Mooring Lines Under Corrosion Effect. , 2008, , .		6
120	Modelling and Analysis of a Semi-Submersible Wind Turbine With a Central Tower With Emphasis on the Brace System. , 2013, , .		6
121	Modeling and Control of Crane Overload Protection During Marine Lifting Operation Based on Model Predictive Control. , 2017, , .		6
122	Effect of hydrodynamic load modelling on the response of floating wind turbines and its mooring system in small water depths. Journal of Physics: Conference Series, 2018, 1104, 012006.	0.4	6
123	Effects of Wind-Wave Misalignment on a Wind Turbine Blade Mating Process: Impact Velocities, Blade Root Damages and Structural SafetyAssessment. Journal of Marine Science and Application, 2020, 19, 218-233.	1.7	6
124	Fatigue Analysis of a Wave Energy Converter Taking Into Account Different Control Strategies. , 2013, ,		5
125	Steady State Motion Analysis of an Offshore Wind Turbine Transition Piece During Installation Based on Outcrossing of the Motion Limit State. , 2015, , .		5
126	Benchmarking of a Computational Fluid Dynamics-Based Numerical Wave Tank for Studying Wave Load Effects on Fixed and Floating Offshore Structures. Journal of Offshore Mechanics and Arctic Engineering, 2017, 139, .	1.2	5

#	Article	IF	CITATIONS
127	Parametric Study of a Counter Weight Suspension System for the TetraSpar Floating Wind Turbine. , 2018, , .		5
128	Effect of Shut-Down Procedures on the Dynamic Responses of a Spar-Type Floating Wind Turbine. , 2013, , .		5
129	Numerical modeling of nonstationary hydrodynamic forces and induced motions of a coupled offshore floating installation system. Ocean Engineering, 2022, 246, 110618.	4.3	5
130	Time Variant Reliability of Mooring System Considering Corrosion Deterioration. , 2005, , 203.		4
131	Mooring Line Damping Estimation by a Simplified Dynamic Model. , 2007, , 197.		4
132	Structural Load Analysis of a Wind Turbine under Pitch Actuator and Controller Faults. Journal of Physics: Conference Series, 2014, 555, 012034.	0.4	4
133	Comparison of Experimental Data of a Moored Multibody Wave Energy Device With a Hybrid CFD and BIEM Numerical Analysis Framework. , 2015, , .		4
134	Numerical assessment of wind turbine blade damage due to contact/impact with tower during installation. IOP Conference Series: Materials Science and Engineering, 2017, 276, 012025.	0.6	4
135	Structural Safety Assessment of Marine Operations From a Long-Term Perspective: A Case Study of Offshore Wind Turbine Blade Installation. , 2019, , .		4
136	Wave- and Wind-induced Responses of the Semisubmersible Wind Energy and Flap-type Wave Energy Converter Based on Experiments. International Journal of Offshore and Polar Engineering, 2017, 27, 54-62.	0.8	4
137	Bondline Thickness Effects on Damage Tolerance of Adhesive Joints Subjected to Localized Impact Damages: Application to Leading Edge of Wind Turbine Blades. Materials, 2021, 14, 7526.	2.9	4
138	Statistical Uncertainty Analysis in the Long-Term Distribution of Wind- and Wave-Induced Hot-Spot Stress for Fatigue Design of Jacket Wind Turbine Based on Time Domain Simulations. , 2011, , .		3
139	Structural Modeling and Analysis of a Wave Energy Converter Applying Dynamical Substructuring Method. , 2013, , .		3
140	The Effects of Surface Waves and Submergence on the Performance and Loading of a Tidal Turbine. , 2017, , .		3
141	A comparative study of different methods for predicting the long-term extreme structural responses of the combined wind and wave energy concept semisubmersible wind energy and flap-type wave energy converter. Proceedings of the Institution of Mechanical Engineers Part M: Journal of Engineering for the Maritime Environment. 2018. 232. 85-96.	0.5	3
142	A Summary of the Recent Work at NTNU on Marine Operations Related to Installation of Offshore Wind Turbines. , 2018, , .		3
143	Explicit Structural Response-Based Methodology for Assessment of Operational Limits for Single Blade Installation for Offshore Wind Turbines. Lecture Notes in Civil Engineering, 2019, , 737-750.	0.4	3
144	Numerical Simulations for Installation of Offshore Wind Turbine Monopiles Using Floating Vessels. , 2013, , .		2

#	Article	IF	CITATIONS
145	Gear Contact Fatigue Reliability Analysis for Wind Turbines Under Stochastic Dynamic Conditions Considering Inspection and Repair. , 2014, , .		2
146	Model Test and Numerical Analysis of an Offshore Bottom Fixed Pentapod Wind Turbine Under Seismic Loads. , 2016, , .		2
147	A Numerical Study on a Flopper Stopper for Leg Positioning of a Jack-Up Barge. , 2017, , .		2
148	A data-driven approach for fault diagnosis of drivetrain system in a spar-type floating wind turbine based on the multi-point acceleration measurements. Journal of Physics: Conference Series, 2022, 2265, 032096.	0.4	2
149	Extreme Value Analysis of the Response of a Turret-Moored FPSO. , 2010, , .		1
150	Application of the Contour Line Method for Estimating Extreme Response in Mooring Lines of a Two-Body Floating Wave Energy Converter. , 2012, , .		1
151	Comparison of Mooring Loads in Survivability Mode on the Wave Dragon Wave Energy Converter Obtained by a Numerical Model and Experimental Data. , 2012, , .		1
152	Long-Term Stochastic Dynamic Analysis of a Combined Floating Spar-Type Wind Turbine and Wave Energy Converter (STC) System for Mooring Fatigue Damage and Power Prediction. , 2014, , .		1
153	Dynamic Response Analysis of Floating Wind Turbines with Emphasis on Vertical Axis Rotors. , 2016, , 173-192.		1
154	On the Joint Distribution of Excursion Duration and Amplitude of a Narrow-Band Gaussian Process. IEEE Access, 2018, 6, 15236-15248.	4.2	1
155	Dynamic Response Analysis of a Floating Bridge Subjected to Environmental Loads. , 2018, , .		1
156	Loading and Blade Deflection of a Tidal Turbine in Waves. Journal of Offshore Mechanics and Arctic Engineering, 2019, 141, .	1.2	1
157	Extreme Response Analysis of an End-Anchored Floating Bridge. , 2019, , .		1
158	Extreme value prediction of inundation drag force with and without current. Ocean Engineering, 2009, 36, 1244-1250.	4.3	0
159	Long-Term Extreme Response of Marine Structures Considering the Combination of First and Second Order Wave Effects. , 2013, , .		0
160	Long-Term Extreme Response Analysis for a Fixed Offshore Wind Turbine Considering Blade-Pitch-Actuator Fault and Normal Transient Events. , 2014, , .		0
161	Passive Control of a Pentapod Offshore Wind Turbine Under Earthquakes by Using Tuned Mass Damper. , 2017, , .		0
162	A comparison of two fully coupled codes for integrated dynamic analysis of floating vertical axis wind turbines. Energy Procedia, 2017, 137, 282-290.	1.8	0

#	Article	IF	CITATIONS
163	A Global-Local Damage Assessment Methodology for Impact Damage on Offshore Wind Turbine Blades During Lifting Operations. , 2018, , .		ο
164	Effect of Foundation Modeling of a Jack-Up Crane Vessel on the Dynamic Motion Response of an Offshore Wind Turbine Blade During Installation. , 2018, , .		0
165	An Analytical Model of Floating Offshore Wind Turbine Blades Considering Bending-Torsion Coupling Effect. , 2018, , .		Ο
166	Hydro-Elastic Analysis of a Floating Bridge in Waves Considering the Effect of the Hydrodynamic Coupling and the Shore Sides. , 2018, , .		0
167	Resource Assessment. , 2020, , 1-7.		Ο
168	Resource Assessment. , 2022, , 1501-1506.		0