Iker Del Rosal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/908471/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Acid Activation in Phenyliodine Dicarboxylates: Direct Observation, Structures, and Implications. Journal of the American Chemical Society, 2016, 138, 12747-12750.	6.6	127
2	Enantiospecific CH Activation Using Ruthenium Nanocatalysts. Angewandte Chemie - International Edition, 2015, 54, 10474-10477.	7.2	118
3	Rare-Earth Metal Alkyl and Hydride Complexes Stabilized by a Cyclen-Derived [NNNN] Macrocyclic Ancillary Ligand. Journal of the American Chemical Society, 2008, 130, 6920-6921.	6.6	99
4	¹⁷ 0 NMR Gives Unprecedented Insights into the Structure of Supported Catalysts and Their Interaction with the Silica Carrier. Journal of the American Chemical Society, 2012, 134, 9263-9275.	6.6	93
5	Mechanistic Aspects of the Polymerization of Lactide Using a Highly Efficient Aluminum(III) Catalytic System. Journal of the American Chemical Society, 2017, 139, 6217-6225.	6.6	85
6	Heteronuclear NMR Spectroscopy as a Surface‣elective Technique: A Unique Look at the Hydroxyl Groups of γâ€Alumina Chemistry - A European Journal, 2014, 20, 4038-4046.	1.7	82
7	Metallacyclic yttrium alkyl and hydrido complexes: synthesis, structures and catalytic activity in in intermolecular olefin hydrophosphination and hydroamination. Dalton Transactions, 2015, 44, 12137-12148.	1.6	65
8	Near-IR Two Photon Microscopy Imaging of Silica Nanoparticles Functionalized with Isolated Sensitized Yb(III) Centers. Chemistry of Materials, 2014, 26, 1062-1073.	3.2	61
9	Accessing Realistic Models for the WO ₃ –SiO ₂ Industrial Catalyst through the Design of Organometallic Precursors. ACS Catalysis, 2016, 6, 1-18.	5.5	54
10	Side Arm Twist on Zn-Catalyzed Hydrosilylative Reduction of CO ₂ to Formate and Methanol Equivalents with High Selectivity and Activity. ACS Catalysis, 2018, 8, 4710-4718.	5.5	51
11	Zwitterionic amidinates as effective ligands for platinum nanoparticle hydrogenation catalysts. Chemical Science, 2017, 8, 2931-2941.	3.7	48
12	Polymerization of rac ‣actide Using Achiral Iron Complexes: Access to Thermally Stable Stereocomplexes. Angewandte Chemie - International Edition, 2019, 58, 12585-12589.	7.2	47
13	Hydrido-Ruthenium Cluster Complexes as Models for Reactive Surface Hydrogen Species of Ruthenium Nanoparticles. Solid-State ² H NMR and Quantum Chemical Calculations. Journal of the American Chemical Society, 2010, 132, 11759-11767.	6.6	44
14	New perspectives in organolanthanide chemistry from redox to bond metathesis: insights from theory. Chemical Society Reviews, 2016, 45, 2516-2543.	18.7	44
15	Theoretical characterization of the surface composition of ruthenium nanoparticles in equilibrium with syngas. Nanoscale, 2016, 8, 10974-10992.	2.8	43
16	NH3 formation from N2 and H2 mediated by molecular tri-iron complexes. Nature Chemistry, 2020, 12, 740-746.	6.6	42
17	On the Track to Silica-Supported Tungsten Oxo Metathesis Catalysts: Input from ¹⁷ O Solid-State NMR. Inorganic Chemistry, 2013, 52, 10119-10130.	1.9	40
18	Well-Defined Supported Mononuclear Tungsten Oxo Species as Olefin Metathesis Pre-Catalysts. ACS Catalysis, 2014, 4, 4232-4241.	5.5	38

#	Article	IF	CITATIONS
19	DFT calculations of 1H and 13C NMR chemical shifts in transition metal hydrides. Dalton Transactions, 2008, , 3959.	1.6	37
20	From Molecular Complexes to Complex Metallic Nanostructures— ² H Solidâ€&tate NMR Studies of Rutheniumâ€Containing Hydrogenation Catalysts. ChemPhysChem, 2013, 14, 3026-3033.	1.0	37
21	The Nature of Secondary Interactions at Electrophilic Metal Sites of Molecular and Silica-Supported Organolutetium Complexes from Solid-State NMR Spectroscopy. Journal of the American Chemical Society, 2016, 138, 3831-3843.	6.6	35
22	A Uranium(II) Arene Complex That Acts as a Uranium(I) Synthon. Journal of the American Chemical Society, 2021, 143, 19748-19760.	6.6	34
23	Silica-Supported Tungsten Neosilyl Oxo Precatalysts: Impact of the Podality on Activity and Stability in Olefin Metathesis. Organometallics, 2016, 35, 2188-2196.	1.1	31
24	Gold(I)â€Catalysed Asymmetric Hydroamination of Alkenes: Aâ€Silver―and Solventâ€Dependent Enantiodivergent Reaction. Chemistry - A European Journal, 2017, 23, 10777-10788.	1.7	31
25	Strongly Polarized Iridium ^{δâ^'} –Aluminum ^{δ+} Pairs: Unconventional Reactivity Patterns Including CO ₂ Cooperative Reductive Cleavage. Journal of the American Chemical Society, 2021, 143, 4844-4856.	6.6	31
26	Where does Hydrogen Adsorb on Ru Nanoparticles? A Powerful Joint ² H MASâ€NMR/DFT Approach. ChemPhysChem, 2009, 10, 2939-2942.	1.0	30
27	A Density Functional Theory Study of Spectroscopic and Thermodynamic Properties of Surfacic Hydrides on Ru (0001) Model Surface: The Influence of the Coordination Modes and the Coverage. Journal of Physical Chemistry C, 2011, 115, 2169-2178.	1.5	30
28	Efficient CO2 transformation under ambient condition by heterobimetallic rare earth complexes: Experimental and computational evidences of a synergistic effect. Journal of CO2 Utilization, 2019, 33, 413-418.	3.3	30
29	Control of the single atom/nanoparticle ratio in Pd/C catalysts to optimize the cooperative hydrogenation of alkenes. Catalysis Science and Technology, 2021, 11, 984-999.	2.1	30
30	Grafting of Lanthanide Complexes on Silica Surfaces: A Theoretical Investigation. Journal of Physical Chemistry A, 2010, 114, 6322-6330.	1.1	29
31	Nickel Complexes with Bis(8-quinolyl)silyl Ligands. An Unusual Ni ₃ Si ₂ Cluster Containing Six-Coordinate Silicon. Organometallics, 2010, 29, 5544-5550.	1.1	25
32	Functionalization of Carbon Monoxide and <i>tert</i> â€Butyl Nitrile by Intramolecular Proton Transfer in a Bis(Phosphido) Thorium Complex. Angewandte Chemie - International Edition, 2018, 57, 16748-16753.	7.2	25
33	DFT 2H quadrupolar coupling constants of ruthenium complexes: a good probe of the coordination of hydrides in conjuction with experiments. Physical Chemistry Chemical Physics, 2009, 11, 5657.	1.3	24
34	DFT study of the Ring Opening Polymerization of ε-caprolactone by grafted lanthanide complexes: 1—Effect of the grafting mode on the reactivity of borohydride complexes. Dalton Transactions, 2011, 40, 11211.	1.6	24
35	Small Changes Have Consequences: Lessons from Tetrabenzyltitanium and â€zirconium Surface Organometallic Chemistry. Chemistry - A European Journal, 2013, 19, 964-973.	1.7	24
36	DFT study of the Ring Opening Polymerization of ε-caprolactone by grafted lanthanide complexes: 2—Effect of the initiator ligand. Dalton Transactions, 2011, 40, 11228.	1.6	23

#	Article	IF	CITATIONS
37	DFT investigations on the ring-opening polymerization of substituted cyclic carbonates catalyzed by zinc-{β-diketiminate} complexes. Polymer Chemistry, 2015, 6, 3336-3352.	1.9	23
38	Scandium alkyl and hydride complexes supported by a pentadentate diborate ligand: reactions with CO ₂ and N ₂ O. Dalton Transactions, 2018, 47, 13680-13688.	1.6	23
39	Hydrogen Isotope Exchange Catalyzed by Ru Nanocatalysts: Labelling of Complex Molecules Containing <i>N</i> â€Heterocycles and Reaction Mechanism Insights. Chemistry - A European Journal, 2020, 26, 4988-4996.	1.7	23
40	Ligand-Field Theory-Based Analysis of the Adsorption Properties of Ruthenium Nanoparticles. ACS Nano, 2013, 7, 9823-9835.	7.3	22
41	DFT investigations on the ring-opening polymerization of cyclic carbonates catalyzed by zinc-{β-diiminate} complexes. Polymer Chemistry, 2011, 2, 2564.	1.9	21
42	Ligand effect on the NMR, vibrational and structural properties of tetra- and hexanuclear ruthenium hydrido clusters: a theoretical investigation. Dalton Transactions, 2009, , 2142.	1.6	20
43	Ring-opening polymerization of racemic β-butyrolactone promoted by rare earth trisborohydride complexes towards a PHB-diol: an experimental and DFT study. Polymer Chemistry, 2013, 4, 3077.	1.9	20
44	Reversing Conventional Reactivity of Mixed Oxo/Alkyl Rareâ€Earth Complexes: Nonâ€Redox Oxygen Atom Transfer. Angewandte Chemie - International Edition, 2018, 57, 1062-1067.	7.2	20
45	Carboxylic acid-capped ruthenium nanoparticles: experimental and theoretical case study with ethanoic acid. Nanoscale, 2019, 11, 9392-9409.	2.8	19
46	Comparative Insertion Reactivity of CO, CO2, tBuCN, and tBuNC into Thorium– and Uranium–Phosphorus Bonds. Organometallics, 2020, 39, 2152-2161.	1.1	19
47	Supported neodymium catalysts for MMA polymerization: on the origin of surface-induced stereoselectivity. Polymer Chemistry, 2012, 3, 1730-1739.	1.9	18
48	Catalysis to discriminate single atoms from subnanometric ruthenium particles in ultra-high loading catalysts. Catalysis Science and Technology, 2020, 10, 4673-4683.	2.1	18
49	Shape, electronic structure and steric effects of organometallic nanocatalysts: relevant tools to improve the synergy between theory and experiment. Dalton Transactions, 2017, 46, 378-395.	1.6	17
50	Monomeric thorium dihydrido complexes: versatile precursors to actinide metallacycles. Chemical Communications, 2019, 55, 8560-8563.	2.2	17
51	Divergent uranium- <i>versus</i> phosphorus-based reduction of Me ₃ SiN ₃ with steric modification of phosphido ligands. Chemical Science, 2020, 11, 5830-5835.	3.7	17
52	To Bend or Not To Bend: Experimental and Computational Studies of Structural Preference in Ln(Tp ^{iPr} ₂) ₂ (Ln = Sm, Tm). Inorganic Chemistry, 2014, 53, 12066-12075.	1.9	16
53	Amido Analogues of Nonbent Lanthanide (II) and Calcium Metallocenes. Heterolytic Cleavage of ï∈-Bond Ln–Carbazolyl Ligand Promoted by Lewis Base Coordination. Organometallics, 2015, 34, 555-562.	1.1	16
54	Yttrium Dihydride Cation [YH ₂ (THF) ₂] ⁺ _{<i>n</i>} : Aggregate Formation and Reaction with (NNNN)-Type Macrocycles. Organometallics, 2015, 34, 3739-3747.	1.1	16

#	Article	IF	CITATIONS
55	Unprecedented Reaction Mode of Phosphorus in Phosphinidene Rare-Earth Complexes: A Joint Experimental–Theoretical Study. Journal of the American Chemical Society, 2018, 140, 102-105.	6.6	16
56	Single-site cobalt and zinc catalysts for the ring-opening polymerization of lactide. European Polymer Journal, 2019, 120, 109208.	2.6	16
57	2H NMR calculations on polynuclear transition metal complexes: on the influence of local symmetry and other factors. Physical Chemistry Chemical Physics, 2011, 13, 20199.	1.3	15
58	On the Interaction of Phosphines with High Surface Area Mesoporous Silica. Journal of Physical Chemistry C, 2012, 116, 25919-25927.	1.5	15
59	Grafting of lanthanide complexes on silica surfaces dehydroxylated at 200 °C: a theoretical investigation. New Journal of Chemistry, 2015, 39, 7703-7715.	1.4	15
60	Surprising Differences of Alkane Câ€H Activation Catalyzed by Ruthenium Nanoparticles: Complex Surfaceâ€Substrate Recognition?. ChemCatChem, 2018, 10, 4243-4247.	1.8	15
61	Mechanistic investigations <i>via</i> DFT support the cooperative heterobimetallic C–H and O–H bond activation across Taî€ir multiple bonds. Dalton Transactions, 2021, 50, 504-510.	1.6	13
62	Calcium-mediated C(sp ³)–H Activation and Alkylation of Alkylpyridines. Inorganic Chemistry, 2021, 60, 5114-5121.	1.9	13
63	Two-Electron Reduction of a U(VI) Complex with Al(C ₅ Me ₅). Inorganic Chemistry, 2020, 59, 16137-16142.	1.9	12
64	Nickel(0)-Induced β-H Elimination of Magnesium Alkyls: Formation and Reactivity of Heterometallic Hydrides. Inorganic Chemistry, 2020, 59, 13473-13480.	1.9	12
65	Modification of silica-supported tungsten neosilyl oxo precatalysts: impact of substituted phenol on activity and stability in olefin metathesis. Catalysis Science and Technology, 2016, 6, 8532-8539.	2.1	11
66	Formation of an α-Diimine from Isocyanide Coupling Using Thorium(IV) and Uranium(IV) Phosphido–Methyl Complexes. Organometallics, 2019, 38, 1733-1740.	1.1	11
67	Stepwise construction of silica-supported tantalum/iridium heteropolymetallic catalysts using surface organometallic chemistry. Journal of Catalysis, 2020, 392, 287-301.	3.1	11
68	3D Ruthenium Nanoparticle Covalent Assemblies from Polymantane Ligands for Confined Catalysis. Chemistry of Materials, 2020, 32, 2365-2378.	3.2	11
69	Synthesis, Characterization, and Comparative Theoretical Investigation of Dinitrogen-Bridged Group 6-Cold Heterobimetallic Complexes. Inorganic Chemistry, 2021, 60, 5545-5562.	1.9	11
70	¹⁷ O MAS NMR studies of oxo-based olefin metathesis catalysts: a critical assessment of signal enhancement methods. Physical Chemistry Chemical Physics, 2016, 18, 28157-28163.	1.3	10
71	Silica-Grafted Lanthanum Benzyl Species: Synthesis, Characterization, and Catalytic Applications. Organometallics, 2017, 36, 3912-3920.	1.1	10
72	Molecular Thorium Trihydrido Clusters Stabilized by Cyclopentadienyl Ligands. Angewandte Chemie - International Edition, 2020, 59, 11250-11255.	7.2	9

#	Article	IF	CITATIONS
73	A combined theoretical/experimental study highlighting the formation of carbides on Ru nanoparticles during CO hydrogenation. Nanoscale, 2021, 13, 6902-6915.	2.8	9
74	Hydrosilylative reduction of carbon dioxide by a homoleptic lanthanum aryloxide catalyst with high activity and selectivity. Dalton Transactions, 2021, 50, 7804-7809.	1.6	9
75	Bimetallic RuNi nanoparticles as catalysts for upgrading biomass: metal dilution and solvent effects on selectivity shifts. Green Chemistry, 2021, 23, 8480-8500.	4.6	9
76	Scandium and lanthanum hydride complexes stabilized by super-bulky penta-arylcyclopentadienyl ligands. Chemical Communications, 2021, 57, 7766-7769.	2.2	9
77	Computational Design of Pd Nanoclusters and Pd Single-Atom Catalysts Supported on O-Functionalized Graphene. ACS Applied Nano Materials, 2021, 4, 12235-12249.	2.4	9
78	Rational Preparation of Well-Defined Multinuclear Iridium–Aluminum Polyhydride Clusters and Comparative Reactivity. Inorganic Chemistry, 2022, 61, 5715-5730.	1.9	9
79	PMLABe Diol Synthesized by Ringâ€Opening Polymerization of Racemic Benzyl βâ€Malolactonate Initiated by Rareâ€Earth Trisborohydride Complexes: An Experimental and DFT Study. Chemistry - A European Journal, 2014, 20, 14387-14402.	1.7	8
80	Mechanistic Studies on the Catalytic Synthesis of BN Heterocycles (1 <i>H</i> -2,1-Benzazaboroles) at Ruthenium. ACS Catalysis, 2018, 8, 939-948.	5.5	8
81	Uncatalyzed Formation of Polyaminoboranes from Diisopropylaminoborane and Primary Amines: a Kinetically Controlled Polymerization Reaction. Advanced Synthesis and Catalysis, 2021, 363, 2417-2426.	2.1	8
82	Rationalizing the Reactivity of Mixed Allyl Rare-Earth Borohydride Complexes with DFT Studies. Catalysts, 2020, 10, 820.	1.6	7
83	Grafting of a new bis-silylamido aluminum species on silica: insight from solid-state NMR into interactions with the surface. Dalton Transactions, 2019, 48, 5243-5252.	1.6	6
84	Nickel-catalyzed synthesis of Zn(i)–Zn(i) bonded compounds. Chemical Communications, 2021, 57, 13696-13699.	2.2	6
85	Effects of the Grafting of Lanthanum Complexes on a Silica Surface on the Reactivity: Influence on Ethylene, Propylene, and 1,3-Butadiene Homopolymerization. Inorganic Chemistry, 2016, 55, 10024-10033.	1.9	5
86	Ruthenium Icosahedra and Ultrathin Platelets: The Role of Surface Chemistry on the Nanoparticle Structure. Chemistry of Materials, 2022, 34, 2931-2944.	3.2	5
87	Synthesis and Reactivity of Triangular Heterometallic Complexes Containing Zn–Zn Bond. Inorganic Chemistry, 2022, , .	1.9	5
88	DFT calculations in periodic boundary conditions of gas-phase acidities and of transition-metal anionic clusters: case study with carboxylate-stabilized ruthenium clusters. Theoretical Chemistry Accounts, 2019, 138, 1.	0.5	4
89	Alternative (κ1-N:η6-arene vs. κ2-N,N) coordination of a sterically demanding amidinate ligand: are size and electronic structure of the Ln ion decisive factors?. Dalton Transactions, 2019, 48, 8317-8326.	1.6	4
90	Speciation of [Cp* ₂ M ₂ O ₅] in Polar and Donor Solvents. Chemistry - A European Journal, 2013, 19, 3969-3985.	1.7	3

#	Article	IF	CITATIONS
91	Grafting of Lanthanum Complexes on a Functionalized Graphene Surface: Theoretical Investigation on Ethylene and 1,3â€Butadiene Homo―and Coâ€Polymerization. Chemistry - A European Journal, 2020, 26, 13213-13225.	1.7	3
92	When organophosphorus ruthenium complexes covalently bind to ruthenium nanoparticles to form nanoscale hybrid materials. Chemical Communications, 2020, 56, 4059-4062.	2.2	3
93	Surface reactions of ammonia on ruthenium nanoparticles revealed by ¹⁵ N and ¹³ C solid-state NMR. Catalysis Science and Technology, 2021, 11, 4509-4520.	2.1	3
94	Multicentered effective group potentials: ligand-field effects in organometallic clusters and dynamical study of chemical reactivity. Theoretical Chemistry Accounts, 2010, 126, 151-163.	0.5	2
95	How Cul and Nal Interact with Faujasite Zeolite? A Theoretical Investigation. Journal of Physical Chemistry C, 2020, 124, 28026-28037.	1.5	2
96	Molecular Thorium Trihydrido Clusters Stabilized by Cyclopentadienyl Ligands. Angewandte Chemie, 2020, 132, 11346-11351.	1.6	2
97	Supramolecular nanocapsules as two-fold stabilizers of outer-cavity sub-nanometric Ru NPs and inner-cavity ultra-small Ru clusters. Nanoscale Horizons, 2022, 7, 607-615.	4.1	2
98	Hydroboration of vinyl halides with mesitylborane: a direct access to (mesityl)(alkyl)haloboranes. Chemical Communications, 2022, 58, 1589-1592.	2.2	1
99	A Masked Form of an Oâ€Borylated Breslow Intermediate for the Diastereoselective FLPâ€Type Activation of Aldehydes. Chemistry - A European Journal, 2022, 28, .	1.7	1