

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9084580/publications.pdf

Version: 2024-02-01

l ei Vii

#	Article	IF	CITATIONS
1	Acceleration of biotic decolorization and partial mineralization of methyl orange by a photo-assisted n-type semiconductor. Chemosphere, 2022, 291, 132846.	8.2	3
2	Identification and analysis of <i>HDâ€Zip</i> genes involved in the leaf development of <i>Liriodendron chinense</i> using multidimensional analysis. Plant Biology, 2022, 24, 874-886.	3.8	1
3	Application of the IoT in the Food Supply Chain─From the Perspective of Carbon Mitigation. Environmental Science & Technology, 2022, 56, 10567-10576.	10.0	10
4	Energy-saving preparation of a bioflocculant under high-salt condition by using strain Bacillus sp. and the interaction mechanism towards heavy metals. Chemosphere, 2021, 267, 129324.	8.2	21
5	Adsorption characteristics of methylene blue by a dye-degrading and extracellular polymeric substance -producing strain. Journal of Environmental Management, 2021, 288, 112446.	7.8	21
6	The role of anthraquinone-2-sulfonate on biohydrogen production by Klebsiella strain and mixed culture. Bioresource Technology, 2021, 334, 125243.	9.6	8
7	Heavy metal remediation by nano zero-valent iron in the presence of microplastics in groundwater: Inhibition and induced promotion on aging effects. Environmental Pollution, 2021, 287, 117628.	7.5	23
8	Acceleration of the bio-reduction of methyl orange by a magnetic and extracellular polymeric substance nanocomposite. Journal of Hazardous Materials, 2021, 420, 126576.	12.4	14
9	Phase changes during various treatment processes for incineration bottom ash from municipal solid wastes: A review in the application-environment nexus. Environmental Pollution, 2021, 287, 117618.	7.5	15
10	Solid-liquid separation of real cellulose- containing wastewaters by extracellular polymeric substances: Mechanism and cost evaluation. Separation and Purification Technology, 2021, 279, 119665.	7.9	10
11	Enhancement on the microbial extracellular electron transfers by modified lignin materials: Application on decolorization of azo dye. Journal of Materials Research and Technology, 2021, 15, 5265-5276.	5.8	5
12	Enhanced removal of tetrachloroethylene from aqueous solutions by biodegradation coupled with nZVI modified by layered double hydroxide. Chemosphere, 2020, 243, 125260.	8.2	17
13	Simultaneous nitriles degradation and bioflocculant production by immobilized K. oxytoca strain in a continuous flow reactor. Journal of Hazardous Materials, 2020, 387, 121697.	12.4	10
14	Efficient Biodegradation of Azo Dyes Catalyzed by the Anthraquinone-2-sulfonate and Reduced Graphene Oxide Nanocomposite. ACS Omega, 2020, 5, 21137-21144.	3.5	9
15	Developing Oxygen Carriers for Chemical Looping Biomass Processing: Challenges and Opportunities. Advanced Sustainable Systems, 2020, 4, 2000099.	5.3	26
16	Long-term, selective production of caproate in an anaerobic membrane bioreactor. Bioresource Technology, 2020, 302, 122865.	9.6	13
17	Aerobic and Anaerobic Biodegradation of 1,2-Dibromoethane by a Microbial Consortium under Simulated Groundwater Conditions. International Journal of Environmental Research and Public Health, 2019, 16, 3775.	2.6	6
18	Enhanced decolorization of methyl orange by Bacillus sp. strain with magnetic humic acid nanoparticles under high salt conditions. Bioresource Technology, 2019, 288, 121535.	9.6	23

Lei Yu

#	Article	IF	CITATIONS
19	Degradation of endosulfan by high-energy ball milling with CaO: process and mechanism. Environmental Science and Pollution Research, 2019, 26, 18541-18553.	5.3	12
20	Stoichiometry and Thermodynamic Analysis on Biohydrogen Production from Xylose by <i>Klebsiella oxytoca</i> GS-4-08. Energy & Fuels, 2019, 33, 356-361.	5.1	12
21	Cloning and characterization of a Flavin-free oxygen-insensitive azoreductase from Klebsiella oxytoca GS-4-08. Biotechnology Letters, 2019, 41, 371-378.	2.2	13
22	Effects of nanocellulose on sodium alginate/polyacrylamide hydrogel: Mechanical properties and adsorption-desorption capacities. Carbohydrate Polymers, 2019, 206, 289-301.	10.2	154
23	Preparation of a bioflocculant by using acetonitrile as sole nitrogen source and its application in heavy metals removal. Journal of Hazardous Materials, 2019, 363, 242-247.	12.4	33
24	pH-sensitive zwitterionic coating of gold nanocages improves tumor targeting and photothermal treatment efficacy. Nano Research, 2018, 11, 3193-3204.	10.4	53
25	Bioreduction of azo dyes was enhanced by in-situ biogenic palladium nanoparticles. Bioresource Technology, 2018, 266, 176-180.	9.6	37
26	Perfluoroalkyl substances (PFASs) influence the structure and function of soil bacterial community: Greenhouse experiment. Science of the Total Environment, 2018, 642, 1118-1126.	8.0	83
27	Biodegradation kinetics of nitriles with easily degradable substrate by Klebsiella oxytoca GS-4-08. International Biodeterioration and Biodegradation, 2017, 118, 95-101.	3.9	10
28	Simultaneous Decolorization and Biohydrogen Production from Xylose by Klebsiella oxytoca CS-4-08 in the Presence of Azo Dyes with Sulfonate and Carboxyl Groups. Applied and Environmental Microbiology, 2017, 83, .	3.1	10
29	Fabrication of graphene/activated carbon nanofiber composites for high performance capacitive deionization. Journal of the Taiwan Institute of Chemical Engineers, 2017, 72, 213-219.	5.3	34
30	Characterization of a thermo-alkali-stable laccase from <i>Bacillus subtilis</i> cjp3 and its application in dyes decolorization. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2017, 52, 710-717.	1.7	28
31	Enhancing taxol production in a novel endophytic fungus, Aspergillus aculeatinus Tax-6, isolated from Taxus chinensis var . mairei. Fungal Biology, 2017, 121, 1037-1044.	2.5	54
32	A novel Fe(III) dependent bioflocculant from Klebsiella oxytoca GS-4-08: culture conditions optimization and flocculation mechanism. Scientific Reports, 2016, 6, 34980.	3.3	16
33	Enhanced reduction of Fe(III) oxides and methyl orange by Klebsiella oxytoca in presence of anthraquinone-2-disulfonate. Applied Microbiology and Biotechnology, 2016, 100, 4617-4625.	3.6	19
34	Intracellular azo decolorization is coupled with aerobic respiration by a Klebsiella oxytoca strain. Applied Microbiology and Biotechnology, 2015, 99, 2431-2439.	3.6	16
35	Decolorization characteristics of a newly isolated salt-tolerant Bacillus sp. strain and its application for azo dye-containing wastewater in immobilized form. Applied Microbiology and Biotechnology, 2015, 99, 9277-9287.	3.6	30
36	Microbial community structure associated with treatment of azo dye in a start-up anaerobic sequenced batch reactor. Journal of the Taiwan Institute of Chemical Engineers, 2015, 54, 118-124.	5.3	33

Lei Yu

#	Article	IF	CITATIONS
37	Sequential Michael addition thiol–ene and radical-mediated thiol–ene reactions in one-pot produced sequence-ordered polymers. Polymer Chemistry, 2015, 6, 1527-1532.	3.9	51
38	Fabrication, characterization and evaluation of mesoporous activated carbons from agricultural waste: Jerusalem artichoke stalk as an example. Frontiers of Environmental Science and Engineering, 2015, 9, 206-215.	6.0	13
39	New Record of Lycodon liuchengchaoi in Anhui. Zoological Research, 2015, 36, 178-80.	0.6	4
40	Nitrogen and oxygen isotopic compositions of water-soluble nitrate in Taihu Lake water system, China: implication for nitrate sources and biogeochemical process. Environmental Earth Sciences, 2014, 71, 217-223.	2.7	34
41	The adsorption mechanism of anionic and cationic dyes by Jerusalem artichoke stalk-based mesoporous activated carbon. Journal of Environmental Chemical Engineering, 2014, 2, 220-229.	6.7	126
42	Disintegration of aerobic granules induced by trans-2-decenoic acid. Bioresource Technology, 2013, 128, 823-826.	9.6	10
43	Reactive oxygen species (ROS) generated by cyanobacteria act as an electron acceptor in the biocathode of a bio-electrochemical system. Biosensors and Bioelectronics, 2013, 39, 306-310.	10.1	58
44	Involvement of c-type cytochrome CymA in the electron transfer of anaerobic nitrobenzene reduction by Shewanella oneidensis MR-1. Biochemical Engineering Journal, 2012, 68, 227-230.	3.6	26
45	Integration of aerobic granular sludge and mesh filter membrane bioreactor for cost-effective wastewater treatment. Bioresource Technology, 2012, 122, 22-26.	9.6	37
46	lsolation and characterization of a Klebsiella oxytoca strain for simultaneous azo-dye anaerobic reduction and bio-hydrogen production. Applied Microbiology and Biotechnology, 2012, 95, 255-262.	3.6	42
47	Anaerobic degradation of microcrystalline cellulose: Kinetics and micro-scale structure evolution. Chemosphere, 2012, 86, 348-353.	8.2	26
48	Photoassisted Fenton Degradation of Polystyrene. Environmental Science & Technology, 2011, 45, 744-750.	10.0	99
49	Adsorption and decolorization kinetics of methyl orange by anaerobic sludge. Applied Microbiology and Biotechnology, 2011, 90, 1119-1127.	3.6	38
50	Adsorption of Cu(II) and methylene blue from aqueous solutions by magnetic humic acid nanoparticles. , 0, 118, 153-162.		3