Scott J Roberts

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9084100/publications.pdf

Version: 2024-02-01

45 papers

2,462 citations

236925 25 h-index 233421 45 g-index

45 all docs

45 does citations

45 times ranked 3842 citing authors

#	Article	IF	CITATIONS
1	Reprogramming bone progenitor identity and potency through control of collagen density and oxygen tension. IScience, 2022, 25, 104059.	4.1	4
2	Human pluripotent stem cell-derived cartilaginous organoids promote scaffold-free healing of critical size long bone defects. Stem Cell Research and Therapy, 2021, 12, 513.	5 . 5	37
3	Mapping human serum–induced gene networks as a basis for the creation of biomimetic periosteum for bone repair. Cytotherapy, 2020, 22, 424-435.	0.7	7
4	Dual neutralisation of IL-17F and IL-17A with bimekizumab blocks inflammation-driven osteogenic differentiation of human periosteal cells. RMD Open, 2020, 6, e001306.	3.8	32
5	Novel actions of sclerostin on bone. Journal of Molecular Endocrinology, 2019, 62, R167-R185.	2.5	70
6	Folic Acid Exposure Rescues Spina Bifida Aperta Phenotypes in Human Induced Pluripotent Stem Cell Model. Scientific Reports, 2018, 8, 2942.	3.3	18
7	Anabolic Strategies to Augment Bone Fracture Healing. Current Osteoporosis Reports, 2018, 16, 289-298.	3. 6	15
8	Decellularized Cartilage Directs Chondrogenic Differentiation: Creation of a Fracture Callus Mimetic. Tissue Engineering - Part A, 2018, 24, 1364-1376.	3.1	15
9	Close to the bone — in search of the skeletal stem cell. Nature Reviews Rheumatology, 2018, 14, 687-688.	8.0	6
10	From skeletal development to the creation of pluripotent stem cell-derived bone-forming progenitors. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20170218.	4.0	11
11	Biomimetic strategies for fracture repair: Engineering the cell microenvironment for directed tissue formation. Journal of Tissue Engineering, 2017, 8, 204173141770479.	5.5	6
12	Combinatorial Analysis of Growth Factors Reveals the Contribution of Bone Morphogenetic Proteins to Chondrogenic Differentiation of Human Periosteal Cells. Tissue Engineering - Part C: Methods, 2016, 22, 473-486.	2.1	35
13	Early BMP, Wnt and Ca2+/PKC pathway activation predicts the bone forming capacity of periosteal cells in combination with calcium phosphates. Biomaterials, 2016, 86, 106-118.	11.4	49
14	Uncovering the periosteum for skeletal regeneration: The stem cell that lies beneath. Bone, 2015, 70, 10-18.	2.9	207
15	Optimization of Multimodal Imaging of Mesenchymal Stem Cells Using the Human Sodium Iodide Symporter for PET and Cerenkov Luminescence Imaging. PLoS ONE, 2014, 9, e94833.	2.5	32
16	Humanized Culture of Periosteal Progenitors in Allogeneic Serum Enhances Osteogenic Differentiation and In Vivo Bone Formation. Stem Cells Translational Medicine, 2014, 3, 218-228.	3.3	27
17	Sox9 Reprogrammed Dermal Fibroblasts Undergo Hypertrophic Differentiation In Vitro and Trigger Endochondral Ossification In Vivo. Cellular Reprogramming, 2014, 16, 29-39.	0.9	16
18	Mapping calcium phosphate activated gene networks as a strategy forÂtargeted osteoinduction of human progenitors. Biomaterials, 2013, 34, 4612-4621.	11.4	49

#	Article	IF	CITATIONS
19	Fluorescent oxygen sensitive microbead incorporation for measuring oxygen tension in cell aggregates. Biomaterials, 2013, 34, 922-929.	11.4	24
20	¹⁸ F-FDG Labeling of Mesenchymal Stem Cells and Multipotent Adult Progenitor Cells for PET Imaging: Effects on Ultrastructure and Differentiation Capacity. Journal of Nuclear Medicine, 2013, 54, 447-454.	5.0	60
21	Multi-Level Factorial Analysis of Ca ²⁺ /P _i Supplementation as Bio-Instructive Media for <i>In Vitro</i> Biomimetic Engineering of Three-Dimensional Osteogenic Hybrids. Tissue Engineering - Part C: Methods, 2012, 18, 90-103.	2.1	23
22	Engineering Vascularized Bone: Osteogenic and Proangiogenic Potential of Murine Periosteal Cells. Stem Cells, 2012, 30, 2460-2471.	3.2	110
23	ZJU-6, a novel derivative of Erianin, shows potent anti-tubulin polymerisation and anti-angiogenic activities. Investigational New Drugs, 2012, 30, 1899-1907.	2.6	16
24	Validation of a PicoGreen-Based DNA Quantification Integrated in an RNA Extraction Method for Two-Dimensional and Three-Dimensional Cell Cultures. Tissue Engineering - Part C: Methods, 2012, 18, 444-452.	2.1	32
25	A Semi-Autonomous Model of Endochondral Ossification for Developmental Tissue Engineering. Tissue Engineering - Part A, 2012, 18, 1334-1343.	3.1	35
26	Relating the Chondrocyte Gene Network to Growth Plate Morphology: From Genes to Phenotype. PLoS ONE, 2012, 7, e34729.	2.5	24
27	Critical illness-related bone loss is associated with osteoclastic and angiogenic abnormalities. Journal of Bone and Mineral Research, 2012, 27, 1541-1552.	2.8	20
28	Mechanisms of ectopic bone formation by human osteoprogenitor cells on CaP biomaterial carriers. Biomaterials, 2012, 33, 3127-3142.	11.4	103
29	Ectopic bone formation by 3D porous calcium phosphate-Ti6Al4V hybrids produced by perfusion electrodeposition. Biomaterials, 2012, 33, 4044-4058.	11.4	64
30	Assay design considerations for use of affinity aptamer amplification in ultra-sensitive protein assays using capillary electrophoresis. Analytical Methods, 2011, 3, 2156.	2.7	10
31	Enhancement of osteogenic gene expression for the differentiation of human periosteal derived cells. Stem Cell Research, 2011, 7, 137-144.	0.7	42
32	Differentiation Potential of Human Postnatal Mesenchymal Stem Cells, Mesoangioblasts, and Multipotent Adult Progenitor Cells Reflected in Their Transcriptome and Partially Influenced by the Culture Conditions. Stem Cells, 2011, 29, 871-882.	3.2	155
33	The combined bone forming capacity of human periosteal derived cells and calcium phosphates. Biomaterials, 2011, 32, 4393-4405.	11.4	100
34	Probing the Osteoinductive Effect of Calcium Phosphate by Using an <i>In Vitro</i> Biomimetic Model. Tissue Engineering - Part A, 2011, 17, 1083-1097.	3.1	104
35	Engineering Embryonic Stem-Cell Aggregation Allows an Enhanced Osteogenic Differentiation In Vitro. Tissue Engineering - Part C: Methods, 2010, 16, 583-595.	2.1	19
36	Controlled embryoid body formation via surface modification and avidin–biotin cross-linking. Cytotechnology, 2009, 61, 135-144.	1.6	22

SCOTT J ROBERTS

#	Article	IF	CITATIONS
37	Manipulation of live mouse embryonic stem cells using holographic optical tweezers. Journal of Modern Optics, 2009, 56, 448-452.	1.3	18
38	Tissue engineering: strategies, stem cells and scaffolds. Journal of Anatomy, 2008, 213, 66-72.	1.5	417
39	Identification of a novel splice variant of the haloacid dehalogenase: PHOSPHO1. Biochemical and Biophysical Research Communications, 2008, 371, 872-876.	2.1	5
40	Clinical applications of musculoskeletal tissue engineering. British Medical Bulletin, 2008, 86, 7-22.	6.9	39
41	Functional Involvement of PHOSPHO1 in Matrix Vesicle-Mediated Skeletal Mineralization. Journal of Bone and Mineral Research, 2007, 22, 617-627.	2.8	153
42	The presence of PHOSPHO1 in matrix vesicles and its developmental expression prior to skeletal mineralization. Bone, 2006, 39, 1000-1007.	2.9	79
43	Probing the substrate specificities of human PHOSPHO1 and PHOSPHO2. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2005, 1752, 73-82.	2.3	32
44	Identification of a novel class of mammalian phosphoinositol-specific phospholipase C enzymes. International Journal of Molecular Medicine, 2005, 15, 117.	4.0	9
45	Human PHOSPHO1 exhibits high specific phosphoethanolamine and phosphocholine phosphatase activities. Biochemical Journal, 2004, 382, 59-65.	3.7	111