
Maki Kushimoto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9084024/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Threshold increase and lasing inhibition due to hexagonal-pyramid-shaped hillocks in AlGaN-based DUV laser diodes on single-crystal AlN substrate. Japanese Journal of Applied Physics, 2022, 61, 010601.	0.8	4
2	Sputtered polycrystalline MgZnO/Al reflective electrodes for enhanced light emission in AlGaN-based homojunction tunnel junction DUV-LED. Applied Physics Express, 2022, 15, 044001.	1.1	7
3	Structural design optimization of 279 nm wavelength AlGaN homojunction tunnel junction deep-UV light-emitting diode. Applied Physics Express, 2022, 15, 044003.	1.1	6
4	Continuous-wave lasing of AlGaN-based ultraviolet laser diode at 274.8 nm by current injection. Applied Physics Express, 2022, 15, 041007.	1.1	25
5	Impact of heat treatment process on threshold current density in AlGaN-based deep-ultraviolet laser diodes on AlN substrate. Applied Physics Express, 2021, 14, 051003.	1.1	9
6	Improving light output power of AlGaN-based deep-ultraviolet light-emitting diodes by optimizing the optical thickness of p-layers. Applied Physics Express, 2021, 14, 084004.	1.1	26
7	Reduction in operating voltage of AlGaN homojunction tunnel junction deep-UV light-emitting diodes by controlling impurity concentrations. Applied Physics Express, 2021, 14, 084001.	1.1	17
8	Suppression of Green Luminescence of Mgâ€lonâ€lmplanted GaN by Subsequent Implantation of Fluorine Ions at High Temperature. Physica Status Solidi (B): Basic Research, 2020, 257, 1900554.	0.7	12
9	Space charge profile study of AlGaN-based p-type distributed polarization doped claddings without impurity doping for UV-C laser diodes. Applied Physics Letters, 2020, 117, .	1.5	26
10	On-wafer fabrication of etched-mirror UV-C laser diodes with the ALD-deposited DBR. Applied Physics Letters, 2020, 116, .	1.5	42
11	Effect of Annealing on the Electrical and Optical Properties of MgZnO Films Deposited by Radio Frequency Magnetron Sputtering. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 1900955.	0.8	4
12	Experimental observation of high intrinsic thermal conductivity of AlN. Physical Review Materials, 2020, 4, .	0.9	60
13	Design and characterization of a low-optical-loss UV-C laser diode. Japanese Journal of Applied Physics, 2020, 59, 094001.	0.8	31
14	A 271.8 nm deep-ultraviolet laser diode for room temperature operation. Applied Physics Express, 2019, 12, 124003.	1.1	217
15	V-shaped dislocations in a GaN epitaxial layer on GaN substrate. AIP Advances, 2019, 9, .	0.6	8
16	Narrow Excitonic Lines in Core–Shell Nanorods With InGaN/GaN Quantum Wells Intersected by Basal Stacking Faults. Physica Status Solidi (B): Basic Research, 2019, 256, 1800648.	0.7	2
17	Interface amorphization in hexagonal boron nitride films on sapphire substrate grown by metalorganic vapor phase epitaxy. Applied Physics Express, 2018, 11, 051002.	1.1	8
18	Correlation between dislocations and leakage current of p-n diodes on a free-standing GaN substrate. Applied Physics Letters, 2018, 112, .	1.5	142

Макі Кизнімото

#	Article	IF	CITATIONS
19	Reduction of Dislocations in GaN on Silicon Substrate Using In Situ Etching. Physica Status Solidi (B): Basic Research, 2018, 255, 1700387.	0.7	6
20	<i>m</i> â€Plane GaN Schottky Barrier Diodes Fabricated With MOVPE Layer on Several Offâ€Angle <i>m</i> â€Plane GaN Substrates. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1700645.	0.8	20
21	Orientation-controlled epitaxial lateral overgrowth of semipolar GaN on Si(001) with a directionally sputtered AlN buffer layer. Journal of Crystal Growth, 2017, 468, 547-551.	0.7	8
22	Effect of dislocations on the growth of p-type GaN and on the characteristics of p-n diodes. Physica Status Solidi (A) Applications and Materials Science, 2017, 214, 1600837.	0.8	14
23	Facet dependence of leakage current and carrier concentration in m-plane GaN Schottky barrier diode fabricated with MOVPE (Phys. Status Solidi A 8â^•2017). Physica Status Solidi (A) Applications and Materials Science, 2017, 214, 1770150.	0.8	0
24	Facet dependence of leakage current and carrier concentration in m-plane GaN Schottky barrier diode fabricated with MOVPE. Physica Status Solidi (A) Applications and Materials Science, 2017, 214, 1600829.	0.8	14
25	Growth of semipolar \$(1ar{1}01)\$ high-indium-content InGaN quantum wells using InGaN tilting layer on Si(001). Japanese Journal of Applied Physics, 2016, 55, 05FA10.	0.8	4
26	Optically pumped lasing properties of \$(1ar{1}01)\$ InGaN/GaN stripe multiquantum wells with ridge cavity structure on patterned (001) Si substrates. Applied Physics Express, 2015, 8, 022702.	1.1	28
27	Fabrication of InGaN/GaN Multiple Quantum Wells on (11̄01) GaN. Japanese Journal of Applied Physics, 2013, 52, 08JC05.	0.8	5
28	Visualization of depletion layer in AlGaN homojunction p–n junction. Applied Physics Express, 0, , .	1.1	3