

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9083802/publications.pdf Version: 2024-02-01

Ιτικι Χιτ

#	Article	IF	CITATIONS
1	Selective catalytic reduction of NO by ammonia over phosphate-containing Ce0.75Zr0.25O2 solids. Applied Catalysis B: Environmental, 2015, 163, 223-232.	20.2	121
2	Defect-Rich NiCeO _{<i>x</i>} Electrocatalyst with Ultrahigh Stability and Low Overpotential for Water Oxidation. ACS Catalysis, 2019, 9, 1605-1611.	11.2	113
3	Formation of FeOOH Nanosheets Induces Substitutional Doping of CeO _{2â^<} <i>_x</i> with Highâ€Valence Ni for Efficient Water Oxidation. Advanced Energy Materials, 2021, 11, 2002731.	19.5	110
4	Selfâ€Driven Perovskite Narrowband Photodetectors with Tunable Spectral Responses. Advanced Materials, 2021, 33, e2005557.	21.0	109
5	Insights into the efficiency and stability of Cu-based nanowires for electrocatalytic oxygen evolution. Nano Research, 2018, 11, 4323-4332.	10.4	44
6	The Role of Ceria in a Hybrid Catalyst toward Alkaline Water Oxidation. ChemSusChem, 2020, 13, 5273-5279.	6.8	36
7	Cu Vacancy Induced Product Switching from Formate to CO for CO ₂ Reduction on Copper Sulfide. ACS Catalysis, 2022, 12, 9074-9082.	11.2	35
8	Mini Review on Active Sites in Ce-Based Electrocatalysts for Alkaline Water Splitting. Energy & Fuels, 2021, 35, 19000-19011.	5.1	34
9	Oxygen-vacancy-induced photoelectrochemical water oxidation by platelike tungsten oxide photoanodes prepared under acid-mediated hydrothermal treatment conditions. RSC Advances, 2017, 7, 26992-27000.	3.6	32
10	Ultrafast self-assembly of silver nanostructures on carbon-coated copper grids for surface-enhanced Raman scattering detection of trace melamine. Journal of Colloid and Interface Science, 2017, 490, 23-28.	9.4	23
11	Facile and Large-Area Preparation of Porous Ag ₃ PO ₄ Photoanodes for Enhanced Photoelectrochemical Water Oxidation. ACS Applied Materials & Interfaces, 2017, 9, 19507-19512.	8.0	21
12	Selfâ€Ðriven Perovskite Dualâ€Band Photodetectors Enabled by a Charge Separation Reversion Mechanism. Advanced Optical Materials, 2021, 9, 2100517.	7.3	21
13	NH ₃ -SCR activity, hydrothermal stability and poison resistance of a zirconium phosphate/Ce _{0.5} Zr _{0.5} O ₂ catalyst in simulated diesel exhaust. RSC Advances, 2015, 5, 83594-83599.	3.6	18
14	NiMn compound nanosheets for electrocatalytic water oxidation: effects of atomic structures and oxidation states. Nanoscale, 2020, 12, 2472-2478.	5.6	17
15	Effect of lean-oxygen treatment on the adsorption and activity of zirconium phosphate @ Ce0.75Z0.25O2 for NH3-SCR deNO. Catalysis Today, 2016, 267, 47-55.	4.4	13
16	<i>In situ</i> templating synthesis of mesoporous Ni–Fe electrocatalyst for oxygen evolution reaction. RSC Advances, 2020, 10, 23321-23330.	3.6	11
17	Recent advances in surface/interface engineering of noble-metal free catalysts for energy conversion reactions. Materials Chemistry Frontiers, 2021, 5, 3576-3592.	5.9	9
18	Modulating Ni/Ce Ratio in NiyCe100â ´'yOx Electrocatalysts for Enhanced Water Oxidation. Nanomaterials, 2021, 11, 437.	4.1	9

Jun Yu

#	Article	IF	CITATIONS
19	Unusual effects of vacuum annealing on large-area Ag3PO4 microcrystalline film photoanode boosting cocatalyst- and scavenger-free water splitting. Journal of Materiomics, 2021, 7, 929-939.	5.7	8
20	A review on cerium-containing electrocatalysts for oxygen evolution reaction. Functional Materials Letters, 2021, 14, .	1.2	4