
Miguel G Guerrero

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9083625/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Unveiling the underlying molecular basis of astaxanthin accumulation in Haematococcus through integrative metabolomic-transcriptomic analysis. Bioresource Technology, 2021, 332, 125150.	9.6	22
2	Microalgae for oil. Assessment of fatty acid productivity in continuous culture by two high-yield strains, Chlorococcum oleofaciens and Pseudokirchneriella subcapitata. Algal Research, 2017, 23, 37-42.	4.6	25
3	New challenges in microalgae biotechnology. European Journal of Protistology, 2016, 55, 95-101.	1.5	22
4	Continuous culture methodology for the screening of microalgae for oil. Journal of Biotechnology, 2015, 195, 103-107.	3.8	24
5	Cadmium removal by Anabaena sp. ATCC 33047 immobilized in polyurethane foam. International Journal of Environmental Science and Technology, 2015, 12, 1793-1798.	3.5	9
6	Dynamic Flux Balance Analysis in Cyanobacteria for Ethanol Production with Simultaneous Optimization Approaches. Computer Aided Chemical Engineering, 2014, 33, 1165-1170.	0.5	2
7	Assessment of the CO2 fixation capacity of Anabaena sp. ATCC 33047 outdoor cultures in vertical flat-panel reactors. Journal of Biotechnology, 2014, 187, 51-55.	3.8	19
8	Photoautotrophic Production of Astaxanthin by the Microalga Haematococcus pluvialis. , 2010, , 247-258.		1
9	Characterization of an Alcohol Dehydrogenase from the Cyanobacterium <i>Synechocystis</i> sp. Strain PCC 6803 That Responds to Environmental Stress Conditions via the Hik34-Rre1 Two-Component System. Journal of Bacteriology, 2009, 191, 4383-4391.	2.2	55
10	Production of astaxanthin by <i>Haematococcus pluvialis</i> : Taking the oneâ€step system outdoors. Biotechnology and Bioengineering, 2009, 102, 651-657.	3.3	101
11	Efficiency assessment of the oneâ€step production of astaxanthin by the microalga <i>Haematococcus pluvialis</i> . Biotechnology and Bioengineering, 2008, 100, 397-402.	3.3	67
12	Outdoor cultivation of lutein-rich cells of Muriellopsis sp. in open ponds. Applied Microbiology and Biotechnology, 2007, 73, 1259-1266.	3.6	124
13	Antioxidant activity of Haematococcus pluvialis cells grown in continuous culture as a function of their carotenoid and fatty acid content. Applied Microbiology and Biotechnology, 2007, 74, 1112-1119.	3.6	112
14	Outdoor cultivation of microalgae for carotenoid production: current state and perspectives. Applied Microbiology and Biotechnology, 2007, 74, 1163-1174.	3.6	607
15	Comparative analysis of the outdoor culture of Haematococcus pluvialis in tubular and bubble column photobioreactors. Journal of Biotechnology, 2006, 123, 329-342.	3.8	124
16	Production of Dunaliella salina biomass rich in 9-cis-β-carotene and lutein in a closed tubular photobioreactor. Journal of Biotechnology, 2005, 115, 81-90.	3.8	230
17	Efficient one-step production of astaxanthin by the microalgaHaematococcus pluvialis in continuous culture. Biotechnology and Bioengineering, 2005, 91, 808-815.	3.3	101
18	Accumulation of astaxanthin and lutein in Chlorella zofingiensis (Chlorophyta). Applied Microbiology and Biotechnology, 2004, 64, 848-854.	3.6	284

#	Article	IF	CITATIONS
19	Conditions for open-air outdoor culture of Dunaliella salina in southern Spain. Journal of Applied Phycology, 2003, 15, 177-184.	2.8	87
20	Outdoor cultivation of a nitrogen-fixing marine cyanobacterium, Anabaena sp. ATCC 33047. New Biotechnology, 2003, 20, 191-197.	2.7	107
21	Lutein production by Muriellopsis sp. in an outdoor tubular photobioreactor. Journal of Biotechnology, 2001, 85, 289-295.	3.8	134
22	Chemical and rheological properties of an extracellular polysaccharide produced by the cyanobacteriumAnabaena sp. ATCC 33047. Biotechnology and Bioengineering, 2000, 67, 283-290.	3.3	75
23	Carotenoid content of chlorophycean microalgae: factors determining lutein accumulation in Muriellopsis sp. (Chlorophyta). Journal of Biotechnology, 2000, 76, 51-59.	3.8	284
24	Mutational analysis of Asp51 ofAnabaena azollaeglutamine synthetase FEBS Journal, 1999, 266, 1202-1209.	0.2	8
25	BIOCHEMICAL COMPOSITION AND FATTY ACID CONTENT OF FILAMENTOUS NITROGEN-FIXING CYANOBACTERIA. Journal of Phycology, 1998, 34, 812-817.	2.3	123
26	Exopolysaccharide production by the cyanobacterium Anabaena sp. ATCC 33047 in batch and continuous culture. Journal of Biotechnology, 1998, 60, 175-182.	3.8	142
27	Nitrogen-fixing cyanobacteria as source of phycobiliprotein pigments. Composition and growth performance of ten filamentous heterocystous strains. Journal of Applied Phycology, 1995, 7, 17-23.	2.8	47
28	Mechanism of sodium/nitrate symport in Anacystis nidulans R2. Biochimica Et Biophysica Acta - Bioenergetics, 1994, 1187, 250-254.	1.0	14
29	Ammoniumâ€sensitive protein kinase activity in plasma membranes of the cyanobacterium <i>Anacystis nidulans</i> . FEBS Letters, 1994, 350, 19-23.	2.8	16
30	Shift in carbon flow and stimulation of amino-acid turnover induced by nitrate and ammonium assimilation in Anacystis nidulans. Planta, 1993, 189, 461-467.	3.2	25
31	Nitrate transport in the cyanobacterium Anacystis nidulans. Physiologia Plantarum, 1993, 89, 582-587.	5.2	23
32	SODIUM-DEPENDENT NITRATE TRANSPORT AND ENERGETICS OF CYANOBACTERIA. Journal of Phycology, 1993, 29, 389-395.	2.3	22
33	Nitrate transport in the cyanobacterium Anacystis nidulans. Physiologia Plantarum, 1993, 89, 582-587.	5.2	2
34	Nitrate transport in the cyanobacterium <i>Anacystis nidulans</i> R2. Kinetic and energetic aspects. Biochemical Journal, 1992, 282, 639-643.	3.7	61
35	Depression of carbon flow to the glycogen pool induced by nitrogen assimilation in intact cells of Anacystis nidulans. Physiologia Plantarum, 1992, 86, 360-364.	5.2	13
36	Depression of carbon flow to the glycogen pool induced by nitrogen assimilation in intact cells of Anacystis nidulans. Physiologia Plantarum, 1992, 86, 360-364.	5.2	2

#	Article	IF	CITATIONS
37	Changes in the Pigment content of Anabaena variabilis Cells in Outdoor Culture. Journal of Plant Physiology, 1991, 137, 441-445.	3.5	9
38	Enhancement of phycobiliprotein production in nitrogen-fixing cyanobacteria. Journal of Biotechnology, 1991, 20, 263-270.	3.8	26
39	Use of a mutant strain of the cyanobacterium Synechococcus R2 for the determination of nitrate. Analytical Biochemistry, 1991, 198, 200-202.	2.4	9
40	Sequential transduction of light into redox and acid—base energy in photosynthesis. Bioelectrochemistry, 1990, 23, 105-128.	1.0	9
41	Sequential transduction of light into redox and acid—base energy in photosynthesis. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1990, 298, 105-128.	0.1	1
42	Ca ²⁺ Requirement for Aerobic Nitrogen Fixation by Heterocystous Blue-Green Algae. Plant Physiology, 1990, 92, 886-890.	4.8	29
43	Relationship between a 47-kDa cytoplasmic membrane polypeptide and nitrate transport in Anacystis nidulans. Biochemical and Biophysical Research Communications, 1989, 158, 257-262.	2.1	48
44	Determination of intracellular nitrate. Biochemical Journal, 1989, 259, 545-548.	3.7	31
45	The Photosynthetic Assimilation of Nitrate and Its Interactions with CO2 Fixation. , 1989, , 393-411.		2
46	Nitrogen-Fixing Cyanobacterium with a High Phycoerythrin Content. Applied and Environmental Microbiology, 1989, 55, 758-760.	3.1	21
47	Isolation and characterization of Anacystis nidulans R2 mutants affected in nitrate assimilation: Establishment of two new mutant types. Molecular Genetics and Genomics, 1988, 213, 223-228.	2.4	28
48	Regulated nitrate transport in the cyanobacterium Anacystis nidulans. Journal of Bacteriology, 1987, 169, 4376-4378.	2.2	66
49	Modulation of nitrate uptake in Anacystis nidulans by the balance between ammonium assimilation and CO2 fixation. Archives of Biochemistry and Biophysics, 1987, 256, 578-584.	3.0	19
50	Competition between nitrate and nitrite uptake in the cyanobacterium Anacystis nidulans. Biochimica Et Biophysica Acta - Biomembranes, 1987, 896, 109-112.	2.6	14
51	Purification and properties of NADP-dependent non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase from the green alga Chlamydomonas reinhardtii. Biochimica Et Biophysica Acta - General Subjects, 1987, 925, 1-10.	2.4	32
52	Factors affecting the production of biomass by a nitrogen-fixing blue-green alga in outdoor culture. Bioresource Technology, 1987, 13, 33-43.	0.3	53
53	Factors affecting the photoproduction of ammonia from dinitrogen and water by the cyanobacteriumAnabaena sp. strain ATCC 33047. Biotechnology and Bioengineering, 1987, 29, 566-571.	3.3	12

Regulation of Nitrite Reductase in the Cyanobacterium Anacystis nidulans. Microbiology (United) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 6

#	Article	IF	CITATIONS
55	Inhibition of nitrate utilization by amino acids in intact Anacystis nidulans cells. Archives of Microbiology, 1985, 142, 1-5.	2.2	20
56	Regulation of nitrogenase levels in Anabaena sp. ATCC 33047 and other filamentous cyanobacteria. Archives of Microbiology, 1985, 141, 105-111.	2.2	40
57	Regulation of nitrate reductase cellular levels in the cyanobacteria Anabaena variabilis and Synechocystis sp FEMS Microbiology Letters, 1985, 26, 21-25.	1.8	60
58	Photosynthetic Nitrogen Metabolism in High and Low CO2-adaptedScenedesmus. Journal of Experimental Botany, 1985, 36, 1387-1395.	4.8	14
59	Photosynthetic Nitrogen Metabolism in High and Low CO2-adaptedScenedesmus. Journal of Experimental Botany, 1985, 36, 1373-1386.	4.8	17
60	Dependence of nitrate utilization upon active CO2 fixation in Anacystis nidulans: A regulatory aspect of the interaction between photosynthetic carbon and nitrogen metabolism. Archives of Biochemistry and Biophysics, 1985, 237, 396-401.	3.0	47
61	Societá Italiana di Fisiologia Vegetale 24º Congresso Sociale. Giornale Botanico Italiano (Florence,) Tj ETQq1 1	0.784314 0.0	rgBT /Overlo
62	The action of 2-amino-4-(methylphosphinyl)-butanoic acid (phosphinothricin) and its 2-oxo-derivative on the metabolism of cyanobacteria and higher plants. Phytochemistry, 1984, 23, 1-6.	2.9	123
63	Regulation of the nitrate reductase level in Anacystis nidulans: Activity decay under nitrogen stress. Archives of Biochemistry and Biophysics, 1984, 234, 454-459.	3.0	32
64	Regulation of Nitrate Utilization by CO2 Fixation Products in the Cyanobacterium Anacystis nidulans. , 1984, , 715-718.		3
65	Sustained Photoproduction of Ammonia from Dinitrogen and Water by the Nitrogen-Fixing Cyanobacterium Anabaena sp. Strain ATCC 33047. Applied and Environmental Microbiology, 1984, 48, 114-118.	3.1	26
66	Involvement of ammonium metabolism in the nitrate inhibition of nitrogen fixation in Anabaena sp. strain ATCC 33047. Archives of Microbiology, 1983, 136, 81-83.	2.2	26
67	Photosynthetic nature of nitrate uptake and reduction in the cyanobacterium Anacystis nidulans. Biochimica Et Biophysica Acta - Bioenergetics, 1983, 722, 408-416.	1.0	87
68	Regulatory interaction of photosynthetic nitrate utilization and carbon dioxide fixation in the cyanobacterium Anacystis nidulans. Biochimica Et Biophysica Acta - Bioenergetics, 1983, 725, 529-532.	1.0	44
69	Photoproduction of ammonia from nitrate by Anacystis nidulans cells. Biochimica Et Biophysica Acta - Bioenergetics, 1982, 679, 323-330.	1.0	22
70	Photosynthetic production of ammonia. Experientia, 1982, 38, 53-58.	1.2	24
71	Production of ammonium dependent on basicL-amino acids byAnacystic nidulans. Archives of Microbiology, 1982, 131, 91-94.	2.2	8
72	Optimization of Conditions for Photoproduction of Ammonia from Nitrate by <i>Anacystis nidulans</i> . Applied and Environmental Microbiology, 1982, 44, 1013-1019.	3.1	16

#	Article	IF	CITATIONS
73	Sustained Photoproduction of Ammonia from Nitrate by <i>Anacystis nidulans</i> . Applied and Environmental Microbiology, 1982, 44, 1020-1025.	3.1	15
74	Photosynthetic production of ammonia. , 1982, , 59-64.		3
75	Regulation of nitrate reductase levels in the cyanobacteria Anacystis nidulans, Anabaena sp. strain 7119, and Nostoc sp. strain 6719. Journal of Bacteriology, 1981, 145, 175-180.	2.2	199
76	Short-term ammonium inhibition of nitrate utilization by Anacystis nidulans and other cyanobacteria. Archives of Microbiology, 1980, 128, 137-144.	2.2	128
77	Affinity chromatography ofAnacystis nidulans ferredoxin-nitrate reductase and NADP reductase on reduced ferredoxin-sepharose. Analytical Biochemistry, 1978, 90, 408-412.	2.4	13
78	Purification and properties of the NAD(P)H:nitrate reductase of the yeast Rhodotorula glutinis. Biochimica Et Biophysica Acta - Biomembranes, 1977, 482, 272-285.	2.6	49
79	The stereospecificity of nitrate reductase for hydrogen removal from reduced pyridine nucleotides. Biochimica Et Biophysica Acta - Biomembranes, 1977, 482, 19-26.	2.6	23
80	NADH- and NAD(P)H-Nitrate Reductases in Rice Seedlings. Plant Physiology, 1976, 58, 292-294.	4.8	50
81	Molybdenum and iron as functional constituents of the enzymes of the nitrate-reducing system of Azotobacter chroococcum. Archives of Microbiology, 1975, 102, 91-94.	2.2	10
82	Stereospecificity of hydrogen removal from pyridine nucleotide: The reactions catalyzed by nitrate reductase and by xanthine oxidase. FEBS Letters, 1975, 51, 284-286.	2.8	12
83	Nitrite photoreduction by a cell-free preparation of anacystis nidulans. Plant Science Letters, 1974, 3, 273-278.	1.8	26
84	Preparation and characterization of a soluble nitrate reductase from Azotobacter chroococcum. Archives of Microbiology, 1973, 91, 287-304.	2.2	77
85	Characterization of the nitrate-reducing system of the yeast Torulopsis nitratophila. Plant Science Letters, 1973, 1, 105-113.	1.8	39
86	Reduced nicotinamide–adenine dinucleotide–nitrite reductase from Azotobacter chroococcum. Biochemical Journal, 1973, 133, 701-708.	3.7	58
87	Determination of nitrate with nitrate reductase from spinach leaves. Zeitschrift Für Pflanzenphysiologie, 1972, 66, 290-293.	1.4	2
88	Mechanism of nitrate and nitrite reduction in cells grown in the dark. Biochemical and Biophysical Research Communications, 1971, 45, 82-89.	2.1	14