## Oliver H Krämer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9083238/publications.pdf Version: 2024-02-01



Οιινέρ Η Κράδηερ

| #  | Article                                                                                                                                                             | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Acetylation of non-histone proteins modulates cellular signalling at multiple levels. International<br>Journal of Biochemistry and Cell Biology, 2009, 41, 185-198. | 1.2 | 613       |
| 2  | The histone deacetylase inhibitor valproic acid selectively induces proteasomal degradation of HDAC2. EMBO Journal, 2003, 22, 3411-3420.                            | 3.5 | 460       |
| 3  | Histone deacetylase as a therapeutic target. Trends in Endocrinology and Metabolism, 2001, 12, 294-300.                                                             | 3.1 | 238       |
| 4  | A phosphorylation-acetylation switch regulates STAT1 signaling. Genes and Development, 2009, 23, 223-235.                                                           | 2.7 | 227       |
| 5  | Acetylation of Stat1 modulates NF-ÂB activity. Genes and Development, 2006, 20, 473-485.                                                                            | 2.7 | 189       |
| 6  | Clinical trial of valproic acid and all-trans retinoic acid in patients with poor-risk acute myeloid<br>leukemia. Cancer, 2005, 104, 2717-2725.                     | 2.0 | 164       |
| 7  | HDACi – Targets beyond chromatin. Cancer Letters, 2009, 280, 160-167.                                                                                               | 3.2 | 146       |
| 8  | STAT3 regulated ARF expression suppresses prostate cancer metastasis. Nature Communications, 2015, 6, 7736.                                                         | 5.8 | 136       |
| 9  | HDAC2: a critical factor in health and disease. Trends in Pharmacological Sciences, 2009, 30, 647-655.                                                              | 4.0 | 133       |
| 10 | Nuclear export is essential for the tumorâ€promoting activity of survivin. FASEB Journal, 2007, 21,<br>207-216.                                                     | 0.2 | 116       |
| 11 | Drugging the HDAC6–HSP90 interplay in malignant cells. Trends in Pharmacological Sciences, 2014, 35, 501-509.                                                       | 4.0 | 110       |
| 12 | Aberrant expression and activity of histone deacetylases in sporadic idiopathic pulmonary fibrosis.<br>Thorax, 2015, 70, 1022-1032.                                 | 2.7 | 106       |
| 13 | Histone deacetylases: salesmen and customers in the postâ€ŧranslational modification market. Biology<br>of the Cell, 2009, 101, 193-205.                            | 0.7 | 97        |
| 14 | Survivin and YM155: How faithful is the liaison?. Biochimica Et Biophysica Acta: Reviews on Cancer, 2014, 1845, 202-220.                                            | 3.3 | 90        |
| 15 | Phosphorylation–acetylation switch in the regulation of STAT1 signaling. Molecular and Cellular<br>Endocrinology, 2010, 315, 40-48.                                 | 1.6 | 87        |
| 16 | Acetylation modulates the STAT signaling code. Cytokine and Growth Factor Reviews, 2012, 23, 293-305.                                                               | 3.2 | 79        |
| 17 | Enhanced Histone Deacetylase Activity in Malignant Melanoma Provokes RAD51 and FANCD2-Triggered Drug Resistance. Cancer Research, 2016, 76, 3067-3077.              | 0.4 | 75        |
| 18 | Mechanism for ubiquitylation of the leukemia fusion proteins AML1â€ETO and PMLâ€RARα. FASEB Journal, 2008, 22, 1369-1379.                                           | 0.2 | 74        |

| #  | Article                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Dynamically regulated sumoylation of HDAC2 controls p53 deacetylation and restricts apoptosis following genotoxic stress. Journal of Molecular Cell Biology, 2012, 4, 284-293.                              | 1.5 | 70        |
| 20 | Comparative proteome analysis of lung tissue from patients with idiopathic pulmonary fibrosis (IPF), non-specific interstitial pneumonia (NSIP) and organ donors. Journal of Proteomics, 2013, 85, 109-128. | 1.2 | 64        |
| 21 | Concepts to Target MYC in Pancreatic Cancer. Molecular Cancer Therapeutics, 2016, 15, 1792-1798.                                                                                                            | 1.9 | 64        |
| 22 | NFκB/p53 crosstalk—a promising new therapeutic target. Biochimica Et Biophysica Acta: Reviews on<br>Cancer, 2011, 1815, 90-103.                                                                             | 3.3 | 61        |
| 23 | A combination of a ribonucleotide reductase inhibitor and histone deacetylase inhibitors<br>downregulates EGFR and triggers BIM-dependent apoptosis in head and neck cancer. Oncotarget, 2012,<br>3, 31-43. | 0.8 | 60        |
| 24 | MYC and EGR1 synergize to trigger tumor cell death by controlling NOXA and BIM transcription upon treatment with the proteasome inhibitor bortezomib. Nucleic Acids Research, 2014, 42, 10433-10447.        | 6.5 | 58        |
| 25 | HDAC1 and HDAC2 integrate checkpoint kinase phosphorylation and cell fate through the phosphatase-2A subunit PR130. Nature Communications, 2018, 9, 764.                                                    | 5.8 | 58        |
| 26 | Histone deacetylase 2 controls p53 and is a critical factor in tumorigenesis. Biochimica Et Biophysica<br>Acta: Reviews on Cancer, 2014, 1846, 524-538.                                                     | 3.3 | 57        |
| 27 | The histone deacetylases HDAC1 and HDAC2 are required for the growth and survival of renal carcinoma cells. Archives of Toxicology, 2018, 92, 2227-2243.                                                    | 1.9 | 57        |
| 28 | Marbostat-100 Defines a New Class of Potent and Selective Antiinflammatory and Antirheumatic<br>Histone Deacetylase 6 Inhibitors. Journal of Medicinal Chemistry, 2018, 61, 3454-3477.                      | 2.9 | 56        |
| 29 | PML promotes MHC class II gene expression by stabilizing the class II transactivator. Journal of Cell<br>Biology, 2012, 199, 49-63.                                                                         | 2.3 | 54        |
| 30 | MYC directs transcription of MCL1 and elF4E genes to control sensitivity of gastric cancer cells toward HDAC inhibitors. Cell Cycle, 2012, 11, 1593-1602.                                                   | 1.3 | 48        |
| 31 | Histone deacetylase inhibitors block IFNγ-induced STAT1 phosphorylation. Cellular Signalling, 2012, 24,<br>1453-1460.                                                                                       | 1.7 | 47        |
| 32 | Interstrand Crosslink Repair as a Target for HDAC Inhibition. Trends in Pharmacological Sciences, 2017, 38, 822-836.                                                                                        | 4.0 | 47        |
| 33 | Cell-based Analysis of Structure-Function Activity of Threonine Aspartase 1. Journal of Biological<br>Chemistry, 2011, 286, 3007-3017.                                                                      | 1.6 | 45        |
| 34 | A p300 and SIRT1 Regulated Acetylation Switch of C/EBPα Controls Mitochondrial Function. Cell<br>Reports, 2018, 22, 497-511.                                                                                | 2.9 | 45        |
| 35 | Chloroethylating nitrosoureas in cancer therapy: DNA damage, repair and cell death signaling.<br>Biochimica Et Biophysica Acta: Reviews on Cancer, 2017, 1868, 29-39.                                       | 3.3 | 43        |
| 36 | Apoptosis induced by temozolomide and nimustine in glioblastoma cells is supported by JNK/c-Jun-mediated induction of the BH3-only protein BIM. Oncotarget, 2015, 6, 33755-33768.                           | 0.8 | 42        |

| #  | Article                                                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Class I histone deacetylases regulate p53/NF-κB crosstalk in cancer cells. Cellular Signalling, 2017, 29,<br>218-225.                                                                                                                                           | 1.7 | 41        |
| 38 | Sumoylation of HDAC2 promotes NF-κB-dependent gene expression. Oncotarget, 2015, 6, 7123-7135.                                                                                                                                                                  | 0.8 | 40        |
| 39 | Leflunomide Induces Apoptosis in Fludarabine-Resistant and Clinically Refractory CLL Cells. Clinical Cancer Research, 2012, 18, 417-431.                                                                                                                        | 3.2 | 38        |
| 40 | Comparison of the antifibrotic effects of the pan-histone deacetylase-inhibitor panobinostat versus the IPF-drug pirfenidone in fibroblasts from patients with idiopathic pulmonary fibrosis. PLoS ONE, 2018, 13, e0207915.                                     | 1.1 | 38        |
| 41 | Acetylation as a Transcriptional Control Mechanism—HDACs and HATs in Pancreatic Ductal<br>Adenocarcinoma. Journal of Gastrointestinal Cancer, 2011, 42, 85-92.                                                                                                  | 0.6 | 37        |
| 42 | Histone deacetylase inhibitors dysregulate DNA repair proteins and antagonize metastasis-associated processes. Journal of Cancer Research and Clinical Oncology, 2020, 146, 343-356.                                                                            | 1.2 | 37        |
| 43 | Breakdown of the FLT3-ITD/STAT5 Axis and Synergistic Apoptosis Induction by the Histone Deacetylase<br>Inhibitor Panobinostat and FLT3-Specific Inhibitors. Molecular Cancer Therapeutics, 2012, 11, 2373-2383.                                                 | 1.9 | 35        |
| 44 | MTOR inhibitor-based combination therapies for pancreatic cancer. British Journal of Cancer, 2018, 118, 366-377.                                                                                                                                                | 2.9 | 35        |
| 45 | Design and biological evaluation of tetrahydro-β-carboline derivatives as highly potent histone<br>deacetylase 6 (HDAC6) inhibitors. European Journal of Medicinal Chemistry, 2018, 152, 329-357.                                                               | 2.6 | 34        |
| 46 | The Importinâ€Alpha/Nucleophosmin Switch Controls Taspase1 Protease Function. Traffic, 2011, 12,<br>703-714.                                                                                                                                                    | 1.3 | 32        |
| 47 | HSP90 is necessary for the ACK1-dependent phosphorylation of STAT1 and STAT3. Cellular Signalling, 2017, 39, 9-17.                                                                                                                                              | 1.7 | 32        |
| 48 | SIAH2 antagonizes TYK2-STAT3 signaling in lung carcinoma cells. Oncotarget, 2014, 5, 3184-3196.                                                                                                                                                                 | 0.8 | 31        |
| 49 | Caspase-8-mediated PAR-4 cleavage is required for TNFα-induced apoptosis. Oncotarget, 2014, 5, 2988-2998.                                                                                                                                                       | 0.8 | 30        |
| 50 | Increased EGFR expression induced by a novel oncogene, CUG2, confers resistance to doxorubicin through Stat1-HDAC4 signaling. Cellular Oncology (Dordrecht), 2017, 40, 549-561.                                                                                 | 2.1 | 28        |
| 51 | Development of HDAC Inhibitors Exhibiting Therapeutic Potential in T-Cell Prolymphocytic Leukemia.<br>Journal of Medicinal Chemistry, 2021, 64, 8486-8509.                                                                                                      | 2.9 | 28        |
| 52 | Synthesis, Molecular Docking and Biological Characterization of Pyrazine Linked 2-Aminobenzamides<br>as New Class I Selective Histone Deacetylase (HDAC) Inhibitors with Anti-Leukemic Activity.<br>International Journal of Molecular Sciences, 2022, 23, 369. | 1.8 | 28        |
| 53 | Targeting histone deacetylases in pancreatic ductal adenocarcinoma. Journal of Cellular and Molecular Medicine, 2010, 14, 1255-1263.                                                                                                                            | 1.6 | 27        |
| 54 | HDAC3 Activity is Essential for Human Leukemic Cell Growth and the Expression of β-catenin, MYC, and WT1. Cancers, 2019, 11, 1436.                                                                                                                              | 1.7 | 27        |

Oliver H KrÃpmer

| #  | Article                                                                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Mdm2 inhibitors synergize with topoisomerase II inhibitors to induce p53â€independent pancreatic cancer cell death. International Journal of Cancer, 2013, 132, 2248-2257.                                                                                                        | 2.3 | 26        |
| 56 | Analysis of the interplay between all-trans retinoic acid and histone deacetylase inhibitors in leukemic cells. Archives of Toxicology, 2017, 91, 2191-2208.                                                                                                                      | 1.9 | 26        |
| 57 | STAT1‑HDAC4 signaling induces epithelial‑mesenchymal transition and sphere formation of cancer cells overexpressing the oncogene, CUG2. Oncology Reports, 2018, 40, 2619-2627.                                                                                                    | 1.2 | 26        |
| 58 | Deacetylase inhibitors modulate proliferation and self-renewal properties of leukemic stem and progenitor cells. Cell Cycle, 2012, 11, 3219-3226.                                                                                                                                 | 1.3 | 25        |
| 59 | Differential regulation of PML–RARα stability by the ubiquitin ligases SIAH1/SIAH2 and TRIAD1.<br>International Journal of Biochemistry and Cell Biology, 2012, 44, 132-138.                                                                                                      | 1.2 | 23        |
| 60 | The inducible E3 ubiquitin ligases SIAH1 and SIAH2 perform critical roles in breast and prostate cancers. Cytokine and Growth Factor Reviews, 2015, 26, 405-413.                                                                                                                  | 3.2 | 23        |
| 61 | Allosteric inhibition of Taspase1′s pathobiological activity by enforced dimerization <i>in vivo</i> .<br>FASEB Journal, 2012, 26, 3421-3429.                                                                                                                                     | 0.2 | 22        |
| 62 | How to Distinguish Between the Activity of HDAC1-3 and HDAC6 with Western Blot. Methods in Molecular Biology, 2017, 1510, 355-364.                                                                                                                                                | 0.4 | 21        |
| 63 | Histone deacetylase inhibitors induce proteolysis of activated CDC42-associated kinase-1 in leukemic cells. Journal of Cancer Research and Clinical Oncology, 2016, 142, 2263-2273.                                                                                               | 1.2 | 19        |
| 64 | Reverse chemomodulatory effects of the SIRT1 activators resveratrol and SRT1720 in Ewing's sarcoma cells: resveratrol suppresses and SRT1720 enhances etoposide- and vincristine-induced anticancer activity. Journal of Cancer Research and Clinical Oncology, 2016, 142, 17-26. | 1.2 | 19        |
| 65 | The PP2A subunit PR130 is a key regulator of cell development and oncogenic transformation.<br>Biochimica Et Biophysica Acta: Reviews on Cancer, 2020, 1874, 188453.                                                                                                              | 3.3 | 19        |
| 66 | Survivin antagonizes chemotherapy-induced cell death of colorectal cancer cells. Oncotarget, 2018, 9, 27835-27850.                                                                                                                                                                | 0.8 | 19        |
| 67 | HDAC2 Facilitates Pancreatic Cancer Metastasis. Cancer Research, 2022, 82, 695-707.                                                                                                                                                                                               | 0.4 | 19        |
| 68 | STAT5 acetylation. Jak-stat, 2013, 2, e26102.                                                                                                                                                                                                                                     | 2.2 | 18        |
| 69 | JAK1/STAT3 activation directly inhibits IL-12 production in dendritic cells by preventing CDK9/P-TEFb recruitment to the p35 promoter. Biochemical Pharmacology, 2015, 96, 52-64.                                                                                                 | 2.0 | 18        |
| 70 | SUMOylation regulates the intracellular fate of ZO-2. Cellular and Molecular Life Sciences, 2017, 74, 373-392.                                                                                                                                                                    | 2.4 | 18        |
| 71 | PAR-4 overcomes chemo-resistance in breast cancer cells by antagonizing cIAP1. Scientific Reports, 2019, 9, 8755.                                                                                                                                                                 | 1.6 | 16        |
| 72 | A ZEB1-HDAC pathway enters the epithelial to mesenchymal transition world in pancreatic cancer:<br>Figure 1. Gut, 2012, 61, 329-330.                                                                                                                                              | 6.1 | 15        |

5

| #  | Article                                                                                                                                                                                | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | RETRA exerts anticancer activity in Ewing's sarcoma cells independent of their TP53 status. European<br>Journal of Cancer, 2015, 51, 841-851.                                          | 1.3 | 15        |
| 74 | Mechanistic insights into p53â€regulated cytotoxicity of combined entinostat and irinotecan against colorectal cancer cells. Molecular Oncology, 2021, 15, 3404-3429.                  | 2.1 | 15        |
| 75 | Identification of histone deacetylase 10 (HDAC10) inhibitors that modulate autophagy in transformed cells. European Journal of Medicinal Chemistry, 2022, 234, 114272.                 | 2.6 | 15        |
| 76 | Targeting the ubiquitinâ€proteasome system in a pancreatic cancer subtype with hyperactive MYC.<br>Molecular Oncology, 2020, 14, 3048-3064.                                            | 2.1 | 13        |
| 77 | TAK1 and IKK2, novel mediators of SCF-induced signaling and potential targets for c-Kit-driven diseases.<br>Oncotarget, 2015, 6, 28833-28850.                                          | 0.8 | 13        |
| 78 | Acetylation and sumoylation control STAT5 activation antagonistically. Jak-stat, 2012, 1, 203-207.                                                                                     | 2.2 | 12        |
| 79 | Establishment and characterization of HROC69 – a Crohn´s related colonic carcinoma cell line and its matched patient-derived xenograft. Scientific Reports, 2016, 6, 24671.            | 1.6 | 12        |
| 80 | Human platelet lysate as validated replacement for animal serum to assess chemosensitivity. ALTEX:<br>Alternatives To Animal Experimentation, 2019, 36, 277-288.                       | 0.9 | 12        |
| 81 | Subthreshold IKK activation modulates the effector functions of primary mast cells and allows specific targeting of transformed mast cells. Oncotarget, 2015, 6, 5354-5368.            | 0.8 | 12        |
| 82 | Caspase-3 and Caspase-6 cleave STAT1 in leukemic cells. Oncotarget, 2014, 5, 2305-2317.                                                                                                | 0.8 | 11        |
| 83 | Pasteurella multocida toxin- induced osteoclastogenesis requires mTOR activation. Cell<br>Communication and Signaling, 2015, 13, 40.                                                   | 2.7 | 11        |
| 84 | Overexpression of the Catalytically Impaired Taspase1T234V or Taspase1D233A Variants Does Not Have a<br>Dominant Negative Effect in T(4;11) Leukemia Cells. PLoS ONE, 2012, 7, e34142. | 1.1 | 11        |
| 85 | Establishment, functional and genetic characterization of a colon derived large cell neuroendocrine carcinoma cell line. World Journal of Gastroenterology, 2018, 24, 3749-3759.       | 1.4 | 11        |
| 86 | Inhibitors of class I HDACs and of FLT3 combine synergistically against leukemia cells with mutant FLT3. Archives of Toxicology, 2022, 96, 177-193.                                    | 1.9 | 10        |
| 87 | Pharmacodynamic markers for histone deacetylase inhibitor development. Drug Discovery Today<br>Disease Mechanisms, 2007, 4, 277-283.                                                   | 0.8 | 9         |
| 88 | Acetylation of Endogenous STAT Proteins. Methods in Molecular Biology, 2013, 967, 167-178.                                                                                             | 0.4 | 9         |
| 89 | Fly versus man: evolutionary impairment of nucleolar targeting affects the degradome of Drosophila's Taspase1. FASEB Journal, 2015, 29, 1973-1985.                                     | 0.2 | 9         |
| 90 | Loss of Wilms tumor 1 protein is a marker for apoptosis in response to replicative stress in leukemic cells. Archives of Toxicology, 2018, 92, 2119-2135.                              | 1.9 | 9         |

| #   | Article                                                                                                                                                                                                     | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Identification of a highly efficient dual type I/II FMS-like tyrosine kinase inhibitor that disrupts the growth of leukemic cells. Cell Chemical Biology, 2022, 29, 398-411.e4.                             | 2.5 | 9         |
| 92  | Arginine residues within the DNA binding domain of STAT3 promote intracellular shuttling and phosphorylation of STAT3. Cellular Signalling, 2014, 26, 1698-1706.                                            | 1.7 | 8         |
| 93  | A series of novel aryl-methanone derivatives as inhibitors of FMS-like tyrosine kinase 3 (FLT3) in<br>FLT3-ITD-positive acute myeloid leukemia. European Journal of Medicinal Chemistry, 2020, 193, 112232. | 2.6 | 8         |
| 94  | Global metabolic alterations in colorectal cancer cells during irinotecan-induced DNA replication stress. Cancer & Metabolism, 2022, 10, .                                                                  | 2.4 | 8         |
| 95  | STAT1 N-terminal domain discriminatively controls type I and type II IFN signaling. Cytokine, 2021, 144, 155552.                                                                                            | 1.4 | 7         |
| 96  | Establishment, functional and genetic characterization of three novel patient-derived rectal cancer cell lines. World Journal of Gastroenterology, 2018, 24, 4880-4892.                                     | 1.4 | 7         |
| 97  | The interplay between histone deacetylases and rho kinases is important for cancer and neurodegeneration. Cytokine and Growth Factor Reviews, 2017, 37, 29-45.                                              | 3.2 | 6         |
| 98  | Class 1 Histone Deacetylases and Ataxia-Telangiectasia Mutated Kinase Control the Survival of Murine<br>Pancreatic Cancer Cells upon dNTP Depletion. Cells, 2021, 10, 2520.                                 | 1.8 | 6         |
| 99  | The epigenetic modifier HDAC2 and the checkpoint kinase ATM determine the responses of microsatellite instable colorectal cancer cells to 5-fluorouracil. Cell Biology and Toxicology, 2023, 39, 2401-2419. | 2.4 | 6         |
| 100 | Interferon alpha-armed nanoparticles trigger rapid and sustained STAT1-dependent anti-viral cellular responses. Cellular Signalling, 2013, 25, 989-998.                                                     | 1.7 | 5         |
| 101 | PNUTS at the crossroads of tumorigenesis and metastasis formation. Journal of Thoracic Disease, 2018, 10, 560-563.                                                                                          | 0.6 | 5         |
| 102 | DNA replication dynamics of vole genome and its epigenetic regulation. Epigenetics and Chromatin, 2019, 12, 18.                                                                                             | 1.8 | 5         |
| 103 | Structural Insights into the Interaction of Heme with Protein Tyrosine Kinase JAK2**. ChemBioChem, 2021, 22, 861-864.                                                                                       | 1.3 | 5         |
| 104 | Oncogenic Kinase Cascades Induce Molecular Mechanisms That Protect Leukemic Cell Models from<br>Lethal Effects of De Novo dNTP Synthesis Inhibition. Cancers, 2021, 13, 3464.                               | 1.7 | 5         |
| 105 | Microsatellite Status and lκBα Expression Levels Predict Sensitivity to Pharmaceutical Curcumin in Colorectal Cancer Cells. Cancers, 2022, 14, 1032.                                                        | 1.7 | 4         |
| 106 | Detection of Autophagy Induction After HDAC Inhibitor Treatment in Leukemic Cells. Methods in<br>Molecular Biology, 2017, 1510, 3-10.                                                                       | 0.4 | 3         |
| 107 | Important role of Nfkb2 in the KrasG12D-driven carcinogenesis in the pancreas. Pancreatology, 2021, 21, 912-919.                                                                                            | 0.5 | 3         |
| 108 | Singleâ€cell profiling guided combination therapy of câ€Fos and histone deacetylase inhibitors in diffuse<br>large Bâ€cell lymphoma. Clinical and Translational Medicine, 2022, 12, .                       | 1.7 | 3         |

| #   | Article                                                                                                                                            | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Analyzing the Impact of Pan- and Class-Specific HDACi on Differentiation-Associated Factors. Methods<br>in Molecular Biology, 2017, 1510, 375-385. | 0.4 | 2         |
| 110 | RNA interference protocol to silence oncogenic drivers in leukemia cell lines. STAR Protocols, 2022, 3, 101512.                                    | 0.5 | 2         |
| 111 | Impact of the STAT1 N-terminal domain for fibrosarcoma cell responses to ɣ-irradiation. Experimental<br>Results, 2020, 1, .                        | 0.2 | 1         |
| 112 | News and views. Archives of Toxicology, 2022, 96, 2143-2144.                                                                                       | 1.9 | 1         |
| 113 | Novel insight into mechanisms for ATR activation by chromatin structures. Archives of Toxicology, 2021, 95, 3433-3434.                             | 1.9 | 0         |
| 114 | WT1 Protects Leukemic Cells from Cytotoxic Replicative Stress. Blood, 2014, 124, 880-880.                                                          | 0.6 | 0         |