Jia-shi Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9082296/publications.pdf

Version: 2024-02-01

		94381	1	38417	
340	6,297	37		58	
papers	citations	h-index		g-index	
349	240	349		1744	
349	349	343		1744	
all docs	docs citations	times ranked		citing authors	

#	Article	IF	CITATIONS
1	Performance of a piezoelectric bimorph for scavenging vibration energy. Smart Materials and Structures, 2005, 14, 769-774.	1.8	180
2	Higher-Order Theories of Piezoelectric Plates and Applications. Applied Mechanics Reviews, 2000, 53, 87-99.	4.5	158
3	An Introduction to the Mathematical Theory of Vibrations of Elastic Plates. , 2006, , .		140
4	An analysis of the extension of a ZnO piezoelectric semiconductor nanofiber under an axial force. Smart Materials and Structures, 2017, 26, 025030.	1.8	139
5	Transmitting electric energy through a metal wall by acoustic waves using piezoelectric transducers. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2003, 50, 773-781.	1.7	130
6	Saint-Venant's principle in linear piezoelectricity. Journal of Elasticity, 1995, 38, 209-218.	0.9	123
7	Piezoelectric transformer structural modeling - a review. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2007, 54, 1154-1170.	1.7	118
8	Connected Vibrating Piezoelectric Bimorph Beams as a Wide-band Piezoelectric Power Harvester. Journal of Intelligent Material Systems and Structures, 2009, 20, 569-574.	1.4	115
9	Electric potential and carrier distribution in a piezoelectric semiconductor nanowire in time-harmonic bending vibration. Nano Energy, 2018, 43, 22-28.	8.2	107
10	An analysis of PN junctions in piezoelectric semiconductors. Journal of Applied Physics, 2017, 122, .	1.1	82
11	Piezotronic effects in the extension of a composite fiber of piezoelectric dielectrics and nonpiezoelectric semiconductors. Journal of Applied Physics, 2018, 124, .	1.1	79
12	A Review of a Few Topics in Piezoelectricity. Applied Mechanics Reviews, 2006, 59, 335-345.	4.5	75
13	Extensional vibration characteristics and screening of polarization charges in a ZnO piezoelectric semiconductor nanofiber. Journal of Applied Physics, 2018, 124, .	1.1	73
14	Piezoelectric waves near an imperfectly bonded interface between two half-spaces. Applied Physics Letters, 2006, 88, 203509.	1.5	69
15	Performance of a piezoelectric harvester in thickness-stretch mode of a plate. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2005, 52, 1872-1876.	1.7	67
16	A mode III crack in a piezoelectric semiconductor of crystals with 6mm symmetry. International Journal of Solids and Structures, 2007, 44, 3928-3938.	1.3	65
17	Piezopotential in a bended composite fiber made of a semiconductive core and of two piezoelectric layers with opposite polarities. Nano Energy, 2018, 54, 341-348.	8.2	61
18	Effects of semiconduction on electromechanical energy conversion in piezoelectrics. Smart Materials and Structures, 2015, 24, 025021.	1.8	59

#	Article	IF	CITATIONS
19	Amplification of acoustic waves in piezoelectric semiconductor plates. International Journal of Solids and Structures, 2005, 42, 3171-3183.	1.3	57
20	Stability of Shallow Tunnel Using Rigid Blocks and Finite-Element Upper Bound Solutions. International Journal of Geomechanics, 2010, 10, 242-247.	1.3	56
21	Nonlinear behavior of a piezoelectric power harvester near resonance. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2006, 53, 1387-1391.	1.7	54
22	Thickness-shear vibration of rotated Y-cut quartz plates with relatively thick electrodes of unequal thickness. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2005, 52, 918-922.	1.7	52
23	Harvesting magnetic energy using extensional vibration of laminated magnetoelectric plates. Applied Physics Letters, 2009, 95, .	1.5	52
24	Effects of electrodes with continuously varying thickness on energy trapping in thickness-shear mode quartz resonators. Ultrasonics, 2008, 48, 150-154.	2.1	51
25	Electrical behaviors of a piezoelectric semiconductor fiber under a local temperature change. Nano Energy, 2019, 66, 104081.	8.2	51
26	Transient extensional vibration in a ZnO piezoelectric semiconductor nanofiber under a suddenly applied end force. Materials Research Express, 2019, 6, 025902.	0.8	51
27	The cylindrical bending vibration of a laminated elastic plate due to piezoelectric actuators. Smart Materials and Structures, 1994, 3, 485-493.	1.8	50
28	Shape control of vibrating simply supported rectangular plates. AIAA Journal, 1996, 34, 116-122.	1.5	50
29	Equations for thick elastic plates with partially electroded piezoelectric actuators and higher order electric fields. Smart Materials and Structures, 1999, 8, 73-82.	1.8	49
30	Mechanics of electroelastic bodies under biasing fields. Applied Mechanics Reviews, 2004, 57, 173-189.	4.5	47
31	An Anti-plane Crack in a Piezoelectric Semiconductor. International Journal of Fracture, 2005, 136, L27-L32.	1.1	47
32	Effects of mechanical fields on mobile charges in a composite beam of flexoelectric dielectrics and semiconductors. Journal of Applied Physics, 2020, 127, .	1.1	47
33	A review of analyses related to vibrations of rotating piezoelectric bodies and gyroscopes. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2005, 52, 698-706.	1.7	42
34	A piezoelectric energy harvester based on flow-induced flexural vibration of a circular cylinder. Journal of Intelligent Material Systems and Structures, 2012, 23, 135-139.	1.4	42
35	Propagation of extensional waves in a piezoelectric semiconductor rod. AIP Advances, 2016, 6, .	0.6	42
36	Two-dimensional equations for piezoelectric thin-film acoustic wave resonators. International Journal of Solids and Structures, 2017, 110-111, 170-177.	1.3	42

#	Article	IF	CITATIONS
37	Effects of electrodes with varying thickness on energy trapping in thickness-shear quartz resonators. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2007, 54, 892-895.	1.7	40
38	Electromechanical fields in a nonuniform piezoelectric semiconductor rod. Journal of Mechanics of Materials and Structures, 2018, 13, 103-120.	0.4	39
39	Thickness vibration of piezoelectric plates of 6mm crystals with tilted six-fold axis and two-layered thick electrodes. Ultrasonics, 2009, 49, 149-152.	2.1	38
40	Thermally Induced Carrier Distribution in a Piezoelectric Semiconductor Fiber. Journal of Electronic Materials, 2019, 48, 4939-4946.	1.0	38
41	FREE VIBRATIONS OF A LINEAR THERMOPIEZOELECTRIC BODY. Journal of Thermal Stresses, 1995, 18, 247-262.	1.1	37
42	I-V characteristics of a piezoelectric semiconductor nanofiber under local tensile/compressive stress. Journal of Applied Physics, 2019, 126, .	1.1	37
43	A vibrating piezoelectric ceramic shell as a rotation sensor. Smart Materials and Structures, 2000, 9, 445-451.	1.8	36
44	The magnetoelectric effects in multiferroic composite nanofibers. Applied Physics Letters, 2009, 94, .	1.5	36
45	Study on the influence of semiconductive property for the improvement of nanogenerator by wave mode approach. Nano Energy, 2018, 52, 474-484.	8.2	36
46	Analysis of Rosen piezoelectric transformers with a varying cross-section. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2008, 55, 1632-1639.	1.7	35
47	Analysis of ceramic thickness shear piezoelectric gyroscopes. Journal of the Acoustical Society of America, 1997, 102, 3542-3548.	0.5	34
48	Acoustoelectric amplification of piezoelectric surface waves. Acta Mechanica, 2004, 172, 113-122.	1.1	34
49	A low frequency piezoelectric power harvester using a spiral-shaped bimorph. Science in China Series G: Physics, Mechanics and Astronomy, 2006, 49, 649-659.	0.2	34
50	Electromechanical Fields Near a Circular PN Junction Between Two Piezoelectric Semiconductors. Acta Mechanica Solida Sinica, 2018, 31, 127-140.	1.0	34
51	Rotation-perturbed surface acoustic waves propagating in piezoelectric crystals. International Journal of Solids and Structures, 2000, 37, 4933-4947.	1.3	33
52	A secondâ€order theory for piezoelectric materials. Journal of the Acoustical Society of America, 1995, 97, 280-288.	0.5	32
53	A new ceramic tube piezoelectric gyroscope. Sensors and Actuators A: Physical, 2003, 107, 42-49.	2.0	32
54	Magnetically induced charge redistribution in the bending of a composite beam with flexoelectric semiconductor and piezomagnetic dielectric layers. Journal of Applied Physics, 2021, 129, .	1.1	32

#	Article	IF	Citations
55	Carrier distribution and electromechanical fields in a free piezoelectric semiconductor rod. Journal of Zhejiang University: Science A, 2016, 17, 37-44.	1.3	31
56	PN junctions with coupling to bending deformation in composite piezoelectric semiconductor fibers. International Journal of Mechanical Sciences, 2020, 173, 105421.	3.6	30
57	Thickness-shear vibrations of rotated Y-cut quartz plates with imperfectly bonded surface mass layers. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2006, 53, 241-245.	1.7	29
58	Analysis of a Circular Piezoelectric Semiconductor Embedded in a Piezoelectric Semiconductor Substrate. Archive of Applied Mechanics, 2006, 76, 381-390.	1.2	29
59	Transient Bending Vibration of a Piezoelectric Semiconductor Nanofiber Under a Suddenly Applied Shear Force. Acta Mechanica Solida Sinica, 2019, 32, 688-697.	1.0	29
60	Stress-induced potential barriers and charge distributions in a piezoelectric semiconductor nanofiber. Applied Mathematics and Mechanics (English Edition), 2019, 40, 591-600.	1.9	29
61	Piezotronic Effect of a Thin Film With Elastic and Piezoelectric Semiconductor Layers Under a Static Flexural Loading. Journal of Applied Mechanics, Transactions ASME, 2019, 86, .	1.1	29
62	Temperature Effects on PN Junctions in Piezoelectric Semiconductor Fibers with Thermoelastic and Pyroelectric Couplings. Journal of Electronic Materials, 2020, 49, 3140-3148.	1.0	29
63	Transmitting electric energy through a closed elastic wall by acoustic waves and piezoelectric transducers. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2008, 55, 1380-1386.	1.7	28
64	Torsion of a flexoelectric semiconductor rod with a rectangular cross section. Archive of Applied Mechanics, 2021, 91, 2027-2038.	1.2	28
65	Dynamic Anti-Plane Problems of Piezoceramics and Applications in Ultrasonics—A Review. Acta Mechanica Solida Sinica, 2008, 21, 207-220.	1.0	27
66	Bending of a Cantilever Piezoelectric Semiconductor Fiber Under an End Force. Advanced Structured Materials, 2018, , 261-278.	0.3	27
67	Effects of piezoelectric coupling on energy mapping of thickness-shear modes. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2004, 51, 1047-1049.	1.7	26
68	High-frequency vibrations of piezoelectric plates driven by lateral electric fields. International Journal of Engineering Science, 2011, 49, 1435-1442.	2.7	26
69	Thickness-shear and thickness-twist vibrations of circular AT-cut quartz resonators. Acta Mechanica Solida Sinica, 2013, 26, 245-254.	1.0	26
70	Resonances and energy trapping in AT-cut quartz resonators operating with fast shear modes driven by lateral electric fields produced by surface electrodes. Ultrasonics, 2015, 59, 14-20.	2.1	26
71	Energy trapping of thickness-extensional modes in thin film bulk acoustic wave resonators. Journal of Mechanical Science and Technology, 2015, 29, 2767-2773.	0.7	26
72	Free vibrations of a piezoelectric body. Journal of Elasticity, 1994, 34, 239-254.	0.9	25

#	Article	IF	CITATIONS
73	Antiplane piezoelectric surface waves over a ceramic half-space with an imperfectly bonded layer. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2006, 53, 1695-1698.	1.7	25
74	Vibration of a thickness-twist mode piezoelectric resonator with asymmetric, nonuniform electrodes. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2008, 55, 841-848.	1.7	24
75	Frequency spectra of AT-cut quartz plates with electrodes of unequal thickness. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2010, 57, 1146-1151.	1.7	24
76	Analysis of the shear stress transferred from a partially electroded piezoelectric actuator to an elastic substrate. Smart Materials and Structures, 2000, 9, 248-254.	1.8	23
77	Surface acoustic waves propagating over a rotating piezoelectric half-space. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2001, 48, 998-1004.	1.7	23
78	Energy trapping of thickness-shear vibration modes of elastic plates with functionally graded materials. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2007, 54, 687-690.	1.7	23
79	Thickness-shear vibration of an AT-cut quartz resonator with a hyperbolic contour. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2012, 59, 1006-1012.	1.7	23
80	Saint-Venant's principle for linear elastic porous materials. Journal of Elasticity, 1995, 39, 265-271.	0.9	22
81	Piezoelectric generator based on torsional modes for power harvesting from angular vibrations. Applied Mathematics and Mechanics (English Edition), 2007, 28, 779-784.	1.9	22
82	Optimal electrode shape and size of doubly rotated quartz plate thickness mode piezoelectric resonators. Applied Physics Letters, 2008, 92, .	1.5	22
83	A theory of electroded thin thermopiezoelectric plates subject to large driving voltages. Journal of Applied Physics, 1994, 76, 5411-5417.	1.1	21
84	Elastic analysis of the transfer of shearing stress from partially electroded piezoelectric actuators to composite plates in cylindrical bending. Smart Materials and Structures, 1997, 6, 333-340.	1.8	21
85	Equations for the flexural motion of elastic plates with partially electroded piezoelectric actuators. Smart Materials and Structures, 1997, 6, 485-490.	1.8	21
86	Electrically forced vibration of a thickness-twist mode piezoelectric resonator with non-uniform electrodes. Acta Mechanica Solida Sinica, 2007, 20, 266-274.	1.0	21
87	Electrical Response of a Multiferroic Composite Semiconductor Fiber Under a Local Magnetic Field. Acta Mechanica Solida Sinica, 2020, 33, 663-673.	1.0	21
88	Propagation and amplification of gap waves between a piezoelectric half-space and a semiconductor film. Acta Mechanica, 2005, 176, 83-93.	1.1	20
89	Theoretical modeling of a thickness-shear mode circular cylinder piezoelectric transformer. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2007, 54, 621-626.	1.7	20
90	Theoretical modeling of frequency-dependent magnetoelectric effects in laminated multiferroic plates. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2009, 56, 2750-2759.	1.7	20

#	Article	IF	CITATIONS
91	Extension of a piezoelectric semiconductor fiber with consideration of electrical nonlinearity. Acta Mechanica, 2018, 229, 4663-4676.	1.1	20
92	Static buckling of piezoelectric semiconductor fibers. Materials Research Express, 2019, 6, 125919.	0.8	20
93	Amplification of acoustic waves in laminated piezoelectric semiconductor plates. Archive of Applied Mechanics, 2004, 74, 288-298.	1.2	19
94	Two-dimensional equations for electroelastic plates with relatively large in-plane shear deformation and nonlinear mode coupling in resonant piezoelectric devices. Acta Mechanica, 2008, 196, 103-111.	1.1	19
95	Transient thickness-shear vibration of a piezoelectric plate of monoclinic crystals. International Journal of Applied Electromagnetics and Mechanics, 2012, 38, 27-37.	0.3	19
96	Piezopotential in a composite cantilever of piezoelectric dielectrics and nonpiezoelectric semiconductors produced by shear force through e ₁₅ . Materials Research Express, 2019, 6, 115917.	0.8	19
97	Analysis of a sandwiched piezoelectric semiconducting thermoelectric structure. Mechanics Research Communications, 2019, 98, 31-36.	1.0	19
98	Temperature Effects on Mobile Charges in Extension of Composite Fibers of Piezoelectric Dielectrics and Non-Piezoelectric Semiconductors. International Journal of Applied Mechanics, 2019, 11, 1950088.	1.3	19
99	Magnetically Induced Carrier Distribution in a Composite Rod of Piezoelectric Semiconductors and Piezomagnetics. Materials, 2020, 13, 3115.	1.3	19
100	Effects of Magnetic Fields on PN Junctions in Piezomagnetic–Piezoelectric Semiconductor Composite Fibers. International Journal of Applied Mechanics, 2020, 12, 2050085.	1.3	19
101	Analysis of Piezoelectric Semiconductor Structures. , 2020, , .		19
102	Equations for Elastic Plates with Partially Electroded Piezoelectric Actuators in Flexure with Shear Deformation and Rotatory Inertia. Journal of Intelligent Material Systems and Structures, 1997, 8, 444-451.	1.4	18
103	Surface waves in electrostrictive materials under biasing fields. Zeitschrift Fur Angewandte Mathematik Und Physik, 2004, 55, 678-700.	0.7	18
104	Analysis of plate piezoelectric unimorphs. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2006, 53, 456-462.	1.7	18
105	Weakly nonlinear behavior of a plate thickness-mode piezoelectric transformer. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2007, 54, 877-881.	1.7	18
106	Finite Element Analysis of Stress Field Concentration Near the Edge of an Electrode. Ferroelectrics, Letters Section, 2007, 34, 108-111.	0.4	18
107	Mechanical behaviour of natural cow leather in tension. Acta Mechanica Solida Sinica, 2009, 22, 37-44.	1.0	18
108	Effect of mass layer stiffness on propagation of thickness-twist waves in rotated Y-cut quartz crystal plates. Ultrasonics, 2009, 49, 401-403.	2.1	18

#	Article	IF	Citations
109	Effects of a Mass Layer With Gradually Varying Thickness on a Quartz Crystal Microbalance. IEEE Sensors Journal, 2011, 11, 1635-1639.	2.4	18
110	Thickness vibrations of rotating piezoelectric plates. Journal of the Acoustical Society of America, 1998, 104, 1427-1435.	0.5	17
111	Amplification of Acoustic Waves in Piezoelectric Semiconductor Shells. Journal of Intelligent Material Systems and Structures, 2005, 16, 613-621.	1.4	17
112	Shear vibration of a crystal plate carrying an array of microbeams. Philosophical Magazine Letters, 2011, 91, 572-581.	0.5	17
113	Energy Conversion Efficiency of a Piezo-Thermoelectric Material. Journal of Electronic Materials, 2018, 47, 4533-4538.	1.0	17
114	Effects of Electric Field Gradient on an Anti-Plane Crack in Piezoelectric Ceramics. International Journal of Fracture, 2004, 127, L111-L116.	1.1	16
115	Thickness-twist modes in a rectangular piezoelectric resonator of hexagonal crystals. Applied Physics Letters, 2006, 88, 153506.	1.5	16
116	Shear Horizontal Piezoelectric Waves in a Piezoceramic Plate Imperfectly Bonded to Two Piezoceramic Half-Spaces. Journal of Mechanics, 2008, 24, 229-239.	0.7	16
117	Fluid-induced frequency shift in a piezoelectric plate driven by lateral electric fields. International Journal of Applied Electromagnetics and Mechanics, 2010, 34, 171-180.	0.3	16
118	Variational formulation of the Stevens-Tiersten equation and application in the analysis of rectangular trapped-energy quartz resonators. Journal of the Acoustical Society of America, 2014, 135, 175-181.	0.5	16
119	Stress-induced electric potential barriers in thickness-stretch deformations of a piezoelectric semiconductor plate. Acta Mechanica, 2021, 232, 4533-4543.	1.1	16
120	Thickness shear vibrations of a circular cylindrical piezoelectric shell. Journal of the Acoustical Society of America, 1995, 97, 309-312.	0.5	15
121	Shear horizontal vibrations of a piezoelectric/ferroelectric wedge. Acta Mechanica, 2004, 173, 13-17.	1.1	15
122	An exact analysis of a rectangular plate piezoelectric generator. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2007, 54, 190-195.	1.7	15
123	A thickness mode acoustic wave sensor for measuring interface stiffness between two elastic materials. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2008, 55, 1678-1681.	1.7	15
124	Optimal electrode shape and size of a few singly rotated quartz and langasite resonators. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2009, 56, 237-238.	1.7	15
125	Analysis of a monolithic crystal plate acoustic wave filter. Ultrasonics, 2011, 51, 991-996.	2.1	15
126	Effects of aspect ratio on the mode couplings of thin-film bulk acoustic wave resonators. AIP Advances, 2017, 7, 055113.	0.6	15

#	Article	IF	CITATIONS
127	Buckling of flexoelectric semiconductor beams. Acta Mechanica, 2021, 232, 2623-2633.	1.1	15
128	Temperature Effects on Mobile Charges in Thermopiezoelectric Semiconductor Plates. International Journal of Applied Mechanics, 0, , 2150037.	1.3	15
129	Frequency shifts in a piezoelectric body due to small amounts of additional mass on its surface. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2004, 51, 1199-1202.	1.7	14
130	Comment on "Admittance matrix of asymmetric piezoelectric bimorph with two separate electrical ports under general distributed load". IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2007, 54, 1087-1089.	1.7	14
131	Propagation of thickness-twist waves in a multi-sectioned piezoelectric plate of 6Âmm crystals. Archive of Applied Mechanics, 2007, 77, 689-696.	1.2	14
132	Energy trapping in high-frequency vibrations of piezoelectric plates with partial mass layers under lateral electric field excitation. Ultrasonics, 2011, 51, 376-381.	2.1	14
133	Interaction between torsional deformation and mobile charges in a composite rod of piezoelectric dielectrics and nonpiezoelectric semiconductors. Mechanics of Advanced Materials and Structures, 2022, 29, 1449-1455.	1.5	14
134	On modeling of extension and flexure response of electroelastic shells under biasing fields. Acta Mechanica, 2002, 156, 163-178.	1.1	13
135	Electromagnetoelastic behavior induced by a crack under antiplane mechanical and inplane electric impacts. International Journal of Fracture, 2005, 132, 49-64.	1.1	13
136	Free vibrations of an electroelastic body under biasing fields. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2005, 52, 358-364.	1.7	13
137	Analysis of a rectangular ceramic plate in electrically forced thickness-twist vibration as a piezoelectric transformer. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2007, 54, 830-835.	1.7	13
138	Propagation of thickness-twist waves in a piezoelectric ceramic plate in contact with viscous fluids. Acta Mechanica, 2010, 212, 263-270.	1.1	13
139	Interface waves in functionally graded piezoelectric materials. International Journal of Engineering Science, 2010, 48, 151-159.	2.7	13
140	Thickness-shear vibration of an elastic plate carrying an array of rigid microbeams with consideration of couple stresses. International Journal of Engineering Science, 2012, 51, 179-189.	2.7	13
141	Electroelastic Effect of Thickness Mode Langasite Resonators. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2007, 54, 2120-2128.	1.7	12
142	Thickness-shear vibration of rotated <i>Y</i> -cut quartz plates with unattached electrodes and asymmetric air gaps. Philosophical Magazine Letters, 2009, 89, 313-321.	0.5	12
143	Nonlinear coupling between thickness- shear and thickness-stretch modes in a rotated y-cut quartz resonator. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2009, 56, 220-224.	1.7	12
144	Effects of Mass Layer Nonuniformity on a Quartz-Crystal Microbalance. IEEE Sensors Journal, 2011, 11, 934-938.	2.4	12

#	Article	IF	CITATIONS
145	Thickness-shear and thickness-twist modes in an AT-cut quartz acoustic wave filter. Ultrasonics, 2015, 58, 1-5.	2.1	12
146	Flexoelectric effects in second-order extension of rods. Mechanics Research Communications, 2021, 111, 103625.	1.0	12
147	Magnetically induced redistribution of mobile charges in bending of composite beams with piezoelectric semiconductor and piezomagnetic layers. Archive of Applied Mechanics, 2021, 91, 2949-2956.	1.2	12
148	One-dimensional equations for a piezoelectric ring and applications in a gyroscope. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2001, 48, 1275-1282.	1.7	11
149	Equations for small fields superposed on finite biasing fields in a thermoelectroelastic body. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2003, 50, 187-192.	1.7	11
150	Piezoelectromagnetic waves in a ceramic plate. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2004, 51, 1035-1039.	1.7	11
151	On Using Strain Gradient Theories In The Analysis Of Cracks. International Journal of Fracture, 2005, 133, L19-L22.	1.1	11
152	Propagation of thickness-twist waves in a quartz plate with asymmetric mass layers. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2006, 53, 1560-1561.	1.7	11
153	Propagation of thickness-twist waves through a joint between two semi-infinite piezoelectric plates. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2007, 54, 888-891.	1.7	11
154	Force–frequency effect of thickness mode langasite resonators. Ultrasonics, 2010, 50, 479-490.	2.1	11
155	Shear-horizontal waves in a rotated Y-cut quartz plate with an imperfectly bonded mass layer. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2011, 58, 616-622.	1.7	11
156	Thickness-shear modes of an elliptical, contoured at-cut quartz resonator. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2013, 60, 1192-1198.	1.7	11
157	Propagation of shear-horizontal waves in piezoelectric plates of cubic crystals. Archive of Applied Mechanics, 2016, 86, 517-528.	1.2	11
158	Analysis of Thermoelectric Generators with General Material Property Variations. Journal of Electronic Materials, 2019, 48, 5516-5522.	1.0	11
159	Torsion of a piezoelectric semiconductor rod of cubic crystals with consideration of warping and in-plane shear of its rectangular cross section. Mechanics of Materials, 2022, 172, 104407.	1.7	11
160	Twoâ€dimensional equations for guided electromagnetic waves in dielectric plates surrounded by free space. Journal of Applied Physics, 1993, 73, 7069-7082.	1.1	10
161	A high sensitivity resonator pressure sensor. Sensors and Actuators A: Physical, 2002, 101, 332-337.	2.0	10
162	A moving screw dislocation in piezoelectromagnetic ceramics. Acta Mechanica, 2004, 172, 123-129.	1.1	10

#	Article	IF	CITATIONS
163	Amplification of acoustic waves in laminated piezoelectric semiconductor plates. Archive of Applied Mechanics, 2004, 74, 288-298.	1.2	10
164	Spatial dispersion of short surface acoustic waves in piezoelectric ceramics. Acta Mechanica, 2005, 180, 11-20.	1.1	10
165	Effects of Piezoelectric Coupling on Bechmann's number for thickness-twish waves in a plate of hexagonal crystals. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2006, 53, 1960-1962.	1.7	10
166	Acoustic Gap Waves in Piezoelectromagnetic Materials. Mathematics and Mechanics of Solids, 2006, 11, 451-458.	1.5	10
167	Thickness-shear vibration of circular crystal plate in cylindrical shell as pressure sensor. Applied Mathematics and Mechanics (English Edition), 2006, 27, 749-755.	1.9	10
168	A high-sensitivity, dual-plate, thickness-shear mode pressure sensor. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2006, 53, 2193-2197.	1.7	10
169	Collective Buckling of Periodic Soft Nanostructures on Surfaces and Promotion for Nanolithography. Journal of Physical Chemistry C, 2007, 111, 13348-13353.	1.5	10
170	Effects of mass layer dimension on a finite quartz crystal microbalance. Acta Mechanica, 2011, 222, 103-113.	1.1	10
171	Five-mode frequency spectra of x ₃ -dependent modes in AT-cut quartz resonators. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2012, 59, 811-816.	1.7	10
172	Variational analysis of thickness-shear vibrations of a quartz piezoelectric plate with two pairs of electrodes as an acoustic wave filter. International Journal of Applied Electromagnetics and Mechanics, 2015, 47, 951-961.	0.3	10
173	Thickness-shear vibration characteristics of an AT-cut quartz resonator with rectangular ring electrodes. International Journal of Applied Electromagnetics and Mechanics, 2016, 51, 1-10.	0.3	10
174	Frequency dependence of electromagnetic radiation from a finite vibrating piezoelectric body. Mechanics Research Communications, 2018, 93, 163-168.	1.0	10
175	Stress sensitivity of electromagnetic resonances in circular dielectric disks. Journal of Applied Physics, 1996, 79, 1224-1232.	1.1	9
176	Nonlinear Equations of Thermoviscoelectroelasticity. Mathematics and Mechanics of Solids, 1998, 3, 113-124.	1.5	9
177	Analytical and numerical modeling of resonant piezoelectric devices in China-A review. Science in China Series G: Physics, Mechanics and Astronomy, 2008, 51, 1775-1807.	0.2	9
178	Electrically forced thickness-shear vibrations of quartz plate with nonlinear coupling to extension. Acta Mechanica Solida Sinica, 2008, 21, 555-563.	1.0	9
179	Functionally graded piezoelectric materials for modal transducers for exciting bulk and surface acoustic waves. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2008, 55, 1555-1558.	1.7	9
180	Thickness-shear vibration of a rectangular quartz plate with partial electrodes. Acta Mechanica Solida Sinica, 2013, 26, 121-128.	1.0	9

#	Article	IF	CITATIONS
181	Overtone frequency spectra for $\hat{1}\frac{3}{4}$ (sub>3 (sub>-dependent modes in AT-cut quartz resonators [Correspondence]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2013, 60, 858-863.	1.7	9
182	Two-dimensional equations for high-frequency extensional vibrations of piezoelectric ceramic plates with thickness poling. Archive of Applied Mechanics, 2014, 84, 1917-1935.	1.2	9
183	A piezoelectric gyroscope based on thickness-shear modes of an AlN bimorph with inclined <i>c</i> -axes. Philosophical Magazine Letters, 2014, 94, 447-454.	0.5	9
184	Mechanical Manipulation of Electrical Behaviors of Piezoelectric Semiconductor Nanofibers by Time-Dependent Stresses. Acta Mechanica Solida Sinica, 2020, 33, 579-585.	1.0	9
185	Vibrations of circular disk dielectric resonators. Journal of Applied Physics, 1993, 73, 7083-7092.	1.1	8
186	The vibration of an elastic dielectric with piezoelectromagnetism. Quarterly of Applied Mathematics, 1995, 53, 753-760.	0.5	8
187	Effects of Electromagnetic Coupling on a Moving Crack in Polarized Ceramics. International Journal of Fracture, 2004, 126, L83-L88.	1.1	8
188	On the shear stress distribution between a functionally graded piezoelectric actuator and an elastic substrate and the reduction of its concentration. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2008, 55, 2360-2362.	1.7	8
189	A nonlinear theory for electroelastic shells with relatively large in-plane shear deformation and its implications in nonlinear mode coupling. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2008, 55, 1146-1152.	1.7	8
190	Collective Buckling of a Two-Dimensional Array of Nanoscale Columns. Journal of Physical Chemistry B, 2008, 112, 14766-14771.	1.2	8
191	Electrically forced vibration of an elastic plate with a finite piezoelectric actuator. Journal of Sound and Vibration, 2009, 321, 242-253.	2.1	8
192	Frequency shifts in a quartz plate piezoelectric resonator in contact with a viscous fluid under a separated electrode. International Journal of Applied Electromagnetics and Mechanics, 2011, 35, 177-187.	0.3	8
193	Shear-horizontal waves in a rotated Y-cut quartz plate in contact with a viscous fluid. Ultrasonics, 2012, 52, 133-137.	2.1	8
194	Spiral piezoelectric transducer in torsional motion as low-frequency power harvester. Applied Mathematics and Mechanics (English Edition), 2013, 34, 589-596.	1.9	8
195	One-dimensional equations for coupled extensional, radial, and axial-shear motions of circular piezoelectric ceramic rods with axial poling. Archive of Applied Mechanics, 2014, 84, 1677-1689.	1.2	8
196	Propagation of thickness-twist waves in elastic plates with periodically varying thickness and phononic crystals. Ultrasonics, 2014, 54, 1899-1903.	2.1	8
197	Long thickness-extensional waves in thin film bulk acoustic wave filters affected by interdigital electrodes. Ultrasonics, 2017, 75, 226-232.	2.1	8
198	An analysis of an unbounded thin film bulk acoustic wave piezoelectric resonator with a circular driving electrode. International Journal of Applied Electromagnetics and Mechanics, 2017, 56, 11-19.	0.3	8

#	Article	IF	CITATIONS
199	Thin film bulk acoustic wave piezoelectric resonators with circular ring driving electrodes for mass sensing. Integrated Ferroelectrics, 2018, 192, 57-66.	0.3	8
200	Trapped-Energy Thickness-Extensional Mode of a Partially Electroded ZnO Thin-Film Resonator. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2018, 65, 1669-1679.	1.7	8
201	An Analysis of Piezomagnetic-Piezoelectric Semiconductor Unimorphs in Coupled Bending and Extension under a Transverse Magnetic Field. Acta Mechanica Solida Sinica, 2021, 34, 743-753.	1.0	8
202	Effects of edge and interior stresses on electrical behaviors of piezoelectric semiconductor films. Ferroelectrics, 2021, 571, 96-108.	0.3	8
203	Electromechanical fields in PN junctions with continuously graded doping in piezoelectric semiconductor rods. Archive of Applied Mechanics, 2022, 92, 325-333.	1.2	8
204	Bending of a Flexoelectric Semiconductor Plate. Acta Mechanica Solida Sinica, 2022, 35, 434-445.	1.0	8
205	Temperature-induced potential barriers in piezoelectric semiconductor films through pyroelectric and thermoelastic couplings and their effects on currents. Journal of Applied Physics, 2022, 131, .	1.1	8
206	VIBRATIONS OF A CRYSTAL PLATE UNDER A THERMAL BIAS. Journal of Thermal Stresses, 2003, 26, 467-477.	1.1	7
207	On Using The Kane-Mindlin Theory in The Analysis Of Cracks in Plates. International Journal of Fracture, 2005, 133, L13-L17.	1.1	7
208	Frequency shifts in a piezoelectric body due to a surface mass layer with consideration of the layer stiffness. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2005, 52, 1200-1203.	1.7	7
209	Vibrations of an asymmetrically electroded piezoelectric plate. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2005, 52, 2031-2038.	1.7	7
210	Effects of middle plane curvature on vibrations of a thickness-shear mode crystal resonator. International Journal of Solids and Structures, 2006, 43, 7840-7851.	1.3	7
211	Nonlinear vibrations of electroelastic shells with relatively large shear deformations. Science in China Series G: Physics, Mechanics and Astronomy, 2006, 49, 660-670.	0.2	7
212	Parametric Study on Geosynthetic-Reinforced Pile-Supported Embankments., 2006,, 255.		7
213	Analysis of Temperature Compensation in a Plate Thickness Mode Bulk Acoustic Wave Resonator. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2007, 54, 1826-1833.	1.7	7
214	High-frequency vibrations of corrugated cylindrical piezoelectric shells. Acta Mechanica Solida Sinica, 2008, 21, 564-572.	1.0	7
215	Collective buckling of an elastic beam array on an elastic substrate for applications in soft lithography. Acta Mechanica, 2010, 215, 235-240.	1.1	7
216	Thickness-shear vibration of a quartz plate connected to piezoelectric plates and electric field sensing. Ultrasonics, 2011, 51, 131-135.	2.1	7

#	Article	IF	Citations
217	Quasi-thickness-shear waves in thin-film piezoelectric resonators of ZnO and AlN with tilted C-Axis. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2012, 59, 2522-2527.	1.7	7
218	Trapped thickness-shear modes in a contoured, partially electroded AT-cut quartz resonator. EPJ Applied Physics, 2015, 69, 10302.	0.3	7
219	Analysis of thickness-shear and thickness-twist modes of AT-cut quartz acoustic wave resonator and filter. Applied Mathematics and Mechanics (English Edition), 2015, 36, 1527-1538.	1.9	7
220	Boundary formulation and numerical analysis of elastic bodies with surface-bonded piezoelectric films. Smart Materials and Structures, 2002, 11, 308-311.	1.8	6
221	Characterization of electroelastic beams under biasing fields with applications in buckling analysis. Archive of Applied Mechanics, 2002, 72, 439-450.	1.2	6
222	Piezoelectromagnetic waves guided by the surface of a ceramic cylinder. Acta Mechanica, 2006, 181, 199-205.	1.1	6
223	An estimate on the second-order normal acceleration sensitivity of a quartz resonator. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2006, 53, 1562-1563.	1.7	6
224	On the effect of the electric field in the free space surrounding a finite piezoelectric body. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2006, 53, 1557-1559.	1.7	6
225	Mass sensitivity of thickness-twist modes in a rectangular piezoelectric plate of hexagonal crystals. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2007, 54, 882-887.	1.7	6
226	Vibrations of a crystal body with a shear-deformable surface mass layer. Acta Mechanica, 2007, 190, 223-232.	1.1	6
227	Vibration characteristics of a circular cylindrical panel piezoelectric transducer. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2008, 55, 2327-2335.	1.7	6
228	Modeling of power transmission through an elastic wall by piezoelectric transducers and acoustic waves. , 2008, , .		6
229	Optimal electrode shape and size for shear mode thin film acoustic wave resonators. Applied Physics Letters, 2009, 95, .	1.5	6
230	Propagation of thickness-twist waves in a piezoelectric ceramic plate with unattached electrodes. Ultrasonics, 2009, 49, 501-504.	2.1	6
231	Characterization of functionally graded elastic materials using a thickness-shear mode quartz resonator. Philosophical Magazine Letters, 2013, 93, 362-370.	0.5	6
232	A Piezoelectric Gyroscope with Self-equilibrated Coriolis Force Based on Overtone Thickness-shear Modes of a Lithium Niobate Plate with an Inversion Layer. IEEE Sensors Journal, 2014, , 1-1.	2.4	6
233	On the propagation of long thickness-stretch waves in piezoelectric plates. Ultrasonics, 2014, 54, 1277-1280.	2.1	6
234	Frequency and amplitude modulations in crystal resonators due to transient thermal effects. Journal of Applied Physics, 2014, 115, 054504.	1,1	6

#	Article	IF	Citations
235	Flexural vibration of a lithium niobate piezoelectric plate with a ferroelectric inversion layer. Mechanics of Advanced Materials and Structures, 2020, 27, 831-839.	1.5	6
236	Stress induced potential barriers in composite piezoelectric semiconductor fibers in extension. Ferroelectrics, Letters Section, 2021, 48, 72-82.	0.4	6
237	A semi-infinite anti-plane crack in a piezoelectric semiconductor. International Journal of Fracture, 2004, 130, L169-L174.	1.1	5
238	Shifts in a crystal resonator due to submersion in a fluid. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2006, 53, 662-664.	1.7	5
239	Thickness-Twist Edge Modes in a Semi-Infinite Piezoelectric Plate of Crystals with 6mm Symmetry (Letters). IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2007, 54, 220-221.	1.7	5
240	On the eigenvalue problem for free vibrations of a piezoelectric/piezomagnetic body. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2008, 55, 734-737.	1.7	5
241	Effects of electric field gradient on the propagation of short piezoelectric interface waves. International Journal of Applied Electromagnetics and Mechanics, 2009, 29, 101-108.	0.3	5
242	Electrically forced shear horizontal vibration of a circular cylindrical elastic shell with a finite piezoelectric actuator. Archive of Applied Mechanics, 2009, 79, 955-964.	1.2	5
243	Scalar Differential Equation for Slowly-Varying Thickness-Shear Modes in AT-Cut Quartz Resonators With Surface Impedance for Acoustic Wave Sensor Application. IEEE Sensors Journal, 2013, 13, 4349-4355.	2.4	5
244	Thickness-shear and thickness-twist vibrations of rectangular quartz crystal plates with nonuniform thickness. Mechanics of Advanced Materials and Structures, 2017, 24, 937-942.	1.5	5
245	Thermally Induced Electromechanical Fields in Unimorphs of Piezoelectric Dielectrics and Nonpiezoelectric Semiconductors. Integrated Ferroelectrics, 2020, 211, 117-131.	0.3	5
246	Interface waves between two piezoelectric half-spaces with a semiconductor film. Journal of Zhejiang University Science B, 2005, 6A, 90-96.	0.4	5
247	Thickness-shear vibrations of a quartz plate under time-dependent biasing deformations. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2003, 50, 1114-1123.	1.7	4
248	Perturbation analysis of frequency shifts in an electroelastic body under biasing fields. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2006, 53, 2442-2449.	1.7	4
249	An exact analysis of forced thickness-twist vibrations of multi-layered piezoelectric plates. Acta Mechanica Solida Sinica, 2007, 20, 211-218.	1.0	4
250	Collective buckling of nonuniform nanobeams interacting through an elastic substrate. Acta Mechanica, 2010, 209, 285-293.	1.1	4
251	Stress-induced frequency shifts of degenerate thickness-shear modes in rotated Y-cut quartz resonators. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2010, 57, 1880-1883.	1.7	4
252	Energy trapping of thickness-shear and thickness-twist modes in a partially electroded AT-cut quartz resonator. Acta Mechanica Solida Sinica, 2012, 25, 579-585.	1.0	4

#	Article	IF	Citations
253	Effects of mismatched electrodes on an ATCut quartz resonator. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2012, 59, 281-286.	1.7	4
254	Shear-horizontal waves in a rotated Y-cut quartz plate with an isotropic elastic layer of finite thickness. Acta Mechanica Solida Sinica, 2012, 25, 82-89.	1.0	4
255	Amplitude evolution equation and transient effects in piezoelectric crystal resonators. Journal of Applied Physics, 2013, 114, 144510.	1.1	4
256	Lateral-Field-Excited Electromechanical Resonances in a LiNbO ₃ Crystal Plate with a Ferroelectric Inversion Layer. Ferroelectrics, 2015, 486, 184-192.	0.3	4
257	Effects of nonlinearity on transient processes in AT-cut quartz thickness-shear resonators. Acta Mechanica Solida Sinica, 2015, 28, 347-352.	1.0	4
258	Differential derivation of momentum and energy equations in electroelasticity. Acta Mechanica Solida Sinica, 2017, 30, 21-26.	1.0	4
259	Coupled compression and bending of piezoelectric semiconductor fibers with imperfection. ZAMM Zeitschrift Fur Angewandte Mathematik Und Mechanik, 2020, 100, e201900324.	0.9	4
260	Stress effects on electric currents in antiplane problems of piezoelectric semiconductors over a rectangular domain. Acta Mechanica, 2022, 233, 1173-1185.	1.1	4
261	Stress sensitivity of resonances of transverse electric modes in circular disk dielectric resonators. Journal of Applied Physics, 1994, 76, 63-72.	1.1	3
262	Secondâ€order constitutive relations for transversely isotropic piezoelectric porous materials. Journal of the Acoustical Society of America, 1995, 97, 2595-2598.	0.5	3
263	A mass sensor based on torsional modes in a conical shell. Applied Physics Letters, 2005, 87, 214108.	1.5	3
264	Mass sensitivity of thickness-shear modes in an isotropic elastic circular cylinder. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2006, 53, 1237-1238.	1.7	3
265	Reduction of crystal resonator second-order normal acceleration sensitivity by overhang plates. Applied Physics Letters, 2006, 88, 193509.	1.5	3
266	One-dimensional equations for planar piezoelectric curved bars. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2007, 54, 2202-2207.	1.7	3
267	Acoustic leakage in electromagnetic waveguides made from piezoelectric materials. Journal of Applied Physics, 2007, 101, 066105.	1.1	3
268	Thickness-shear vibration of a circular cylindrical ceramic cylinder with unattached electrodes and air gaps. Science in China Series G: Physics, Mechanics and Astronomy, 2009, 52, 1423-1427.	0.2	3
269	Thin Film Piezoelectric Actuators with Nonuniform Thickness for Reducing Actuating Shear Stress Concentration. Journal of Intelligent Material Systems and Structures, 2009, 20, 729-731.	1.4	3
270	Analysis of Rosen piezoelectric transformers with end masses. International Journal of Applied Electromagnetics and Mechanics, 2010, 32, 97-110.	0.3	3

#	Article	IF	CITATIONS
271	Collective buckling of line arrays created by soft lithography. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2011, 29, 021001.	0.6	3
272	Shear-horizontal vibration modes of an oblate elliptical cylinder and energy trapping in contoured acoustic wave resonators. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2012, 59, 1774-1780.	1.7	3
273	Analysis of a monolithic, two-dimensional array of quartz crystal microbalances loaded by mass layers with nonuniform thickness. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2012, 59, 746-751.	1.7	3
274	Effects of mass layer imperfect bonding on the electrical impedance of a quartz crystal microbalance. Science China: Physics, Mechanics and Astronomy, 2013, 56, 2186-2191.	2.0	3
275	Equations for high-frequency vibrations of piezoelectric plates derived from a semi-mixed variational principle and applications in resonators. International Journal of Applied Electromagnetics and Mechanics, 2013, 41, 361-373.	0.3	3
276	On the derivation of electric body force, couple and power in an electroelastic body. Acta Mechanica Solida Sinica, 2015, 28, 613-617.	1.0	3
277	Thin-Film Piezoelectric Actuators of Nonuniform Thickness and Nonhomogeneous Material Properties for Modulating Actuation Stress. Mechanics of Advanced Materials and Structures, 2015, 22, 803-812.	1.5	3
278	Thickness-shear Modes and Energy Trapping in a Rectangular Piezoelectric Quartz Resonator with Partial Electrodes. Ferroelectrics, Letters Section, 2015, 42, 10-17.	0.4	3
279	Trapped thickness-extensional modes in high overtone thin film bulk acoustic wave piezoelectric resonators. Ferroelectrics, Letters Section, 2018, 45, 38-48.	0.4	3
280	Thin film bulk acoustic wave filters with ring-dot electrodes. Journal of Zhejiang University: Science A, 2018, 19, 786-795.	1.3	3
281	Effects of Semiconduction on Thickness-Extensional Modes of Piezoelectric Resonators. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2022, 69, 911-912.	1.7	3
282	Effects of mobile charges on interface thermal stresses in a piezoelectric semiconductor composite rod. Archive of Applied Mechanics, 2022, 92, 1633-1641.	1.2	3
283	Gyroscopic effect on surface waves in piezoelectrics. , 1999, , .		2
284	Mass sensitivity of antiplane (SH) modes in an isotropic elastic wedge. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2005, 52, 2306-2307.	1.7	2
285	A new mass sensor based on thickness-twist edge modes in a piezoelectric plate. Europhysics Letters, 2007, 77, 28003.	0.7	2
286	Propagation of straight-crested waves in an electroelastic plate under biasing fields. Acta Mechanica, 2008, 196, 113-122.	1,1	2
287	Optimal electrode shape and size of plate thickness-shear mode piezoelectric resonators., 2008,,.		2
288	Shear-horizontal <i>>waves</i> i>in a rotated Y-cut quartz plate on an elastic half space. Philosophical Magazine Letters, 2012, 92, 77-85.	0.5	2

#	Article	IF	CITATIONS
289	The calculation of electrical circuit parameters of quartz crystal resonators with the consideration of equivalent viscous dissipation. , 2013, , .		2
290	An estimate of the second-order in-plane acceleration sensitivity of a Y-cut Quartz thickness-shear resonator. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2015, 62, 1421-1428.	1.7	2
291	Power delivery to a piezoelectric transducer embedded in an elastic body by acoustic waves. Ferroelectrics, 2016, 504, 189-203.	0.3	2
292	A semi-analytical solution for electric double layers near an elliptical cylinder. Acta Mechanica Sinica/Lixue Xuebao, 2018, 34, 62-67.	1.5	2
293	A second-order theory for lithium niobate piezoelectric plates with a ferroelectric inversion layer in coupled extensional, thickness-stretch and symmetric thickness-shear motions. Acta Mechanica, 2020, 231, 5239-5250.	1.1	2
294	First Report of <i>Bipolaris cactivora</i> Causing Flower Rot of Pitaya (<i>Hylocereus) Tj ETQq0 0 0 rgBT /Overlo</i>	ck 10 Tf 5	0 542 Td (co
295	Effects of surface impedance on current density in a piezoelectric resonator for impedance distribution sensing. Applied Mathematics and Mechanics (English Edition), 2021, 42, 677-688.	1.9	2
296	Effects of surface deformation on the collective buckling of an array of rigid beams on an elastic substrate. Journal of Mechanics of Materials and Structures, 2010, 5, 495-506.	0.4	2
297	Thickness vibrations of a rotating AT-cut quartz plate. , 0, , .		1
298	Piezoelectric Vibratory Gyroscopes. Advances in Mechanics and Mathematics, 2003, , 1-16.	0.2	1
299	Experimental Study on Dynamic Properties of Lime Treated Soil. , 2006, , 81.		1
300	Reduction of surface acoustic wave resonator normal acceleration sensitivity using piezoelectric actuators. Applied Physics Letters, 2009, 95, 123506.	1.5	1
301	Theoretical analysis of a ceramic plate thickness-shear mode piezoelectric transformer. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2009, 56, 613-621.	1.7	1
302	Frequency shifts in plate crystal resonators induced by electric, magnetic, or mechanical fields in surface films. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2011, 58, 2588-2595.	1.7	1
303	Study on the Screening Effectiveness of Vibration Isolation Trench. Applied Mechanics and Materials, 0, 71-78, 4444-4448.	0.2	1
304	Simultaneous determination of thin-film inertia and shear stiffness using thickness-twist and face-shear modes of an AT-cut quartz resonator. Philosophical Magazine Letters, 2012, 92, 683-689.	0.5	1
305	Thickness-stretch vibration of a crystal plate carrying a micro-rod array. Science China: Physics, Mechanics and Astronomy, 2012, 55, 2152-2157.	2.0	1
306	Analysis of the electrically forced vibrations of piezoelectric mesa resonators. Chinese Physics B, 2013, 22, 087704.	0.7	1

#	Article	IF	Citations
307	Effects of asymmetric and nonuniform mass layers on quartz crystal microbalances. Philosophical Magazine Letters, 2013, 93, 27-33.	0.5	1
308	Shear-horizontal piezoelectric waves in an aluminum nitride film on a silicon substrate. Mechanics of Advanced Materials and Structures, 2016, 23, 764-773.	1.5	1
309	An analysis of electric double layers near comb electrodes using the linearized Poisson-Nernst-Planck theory. Journal of Applied Physics, 2017, 121, 044502.	1.1	1
310	Two-dimensional equations for thin-films of ionic conductors. Applied Mathematics and Mechanics (English Edition), 2018, 39, 1071-1088.	1.9	1
311	Mechanically, electrically and magnetically imperfect interface conditions via first-order plate theory. Mechanics Research Communications, 2018, 94, 110-113.	1.0	1
312	Transversely varying thickness-extensional modes in thin film bulk acoustic wave piezoelectric filters with interdigital electrodes. Ferroelectrics, Letters Section, 2019, 46, 19-29.	0.4	1
313	On The Effective Polarization Charges In Theextension Of A Piezoelectric Semiconductor Fiber With A Pn Junction. , 2019, , .		1
314	Enhancement of Energy Conversion Efficiency via Interfacial Carrier Diffusion in Microscale Segmented Thermoelectric Materials. ACS Applied Electronic Materials, 2021, 3, 5548-5554.	2.0	1
315	Transmission of electric energy through an elastic wall. , 0, , .		0
316	Frequency shifts in crystal resonators due to intrinsic stresses in unequal thickness electrodes. , 0, , .		0
317	Sensitivity of Electroelastic Effect to Nonlinear Material Behavior in Langasite Resonators. , 2006, , .		0
318	Analysis of a ceramic plate thickness-twist mode piezoelectric transformer. International Journal of Applied Electromagnetics and Mechanics, 2008, 28, 455-467.	0.3	0
319	Shear-Horizontal Vibration of an Elastic Circular Cylindrical Shell With Two Piezoelectric Transducers. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2009, 56, 1708-1715.	1.7	0
320	Effects of bending stiffness and rotatory inertia in a mass-rod piezoelectric vibratory gyroscope. International Journal of Applied Electromagnetics and Mechanics, 2009, 31, 1-8.	0.3	0
321	Nonlocal and Gradient Effects. , 2009, , 281-318.		0
322	Electrically forced thickness-shear and flexural vibrations of rectangular piezoelectric plates of rotated Y-cut quartz and langasite. , 2009, , .		0
323	Analysis of a monolithic quartz plate thickness-twist mode acoustic wave filter., 2010,,.		0
324	Finite element analysis of circular quartz resonators using scalar differential equation and COMSOL. , 2014, , .		0

#	Article	IF	CITATIONS
325	Study of the nonlinear effects on transient process in AT-cut quartz resonators. , 2014, , .		O
326	An analysis of z-strip at-cut quartz thickness-shear filters. , 2014, , .		0
327	An analysis of z-strip AT-cut quartz thickness-shear resonators. , 2014, , .		O
328	Analysis of thickness-extensional modes in energy-trapped thin film resonators. , 2015, , .		0
329	Preparation and Failure Modes of Simulated Transversely Isotropic Rock. , 2016, , .		O
330	Two-dimensional analysis of piezoelectric thin-film acoustic wave resonators., 2016,,.		0
331	Transient processes in thin film bulk acoustic wave piezoelectric resonators. Ferroelectrics, Letters Section, 2017, 44, 93-100.	0.4	О
332	Piezopotential in a Composite Piezoelectric Semiconductor Cantilever Produced by Shear Force. , 2019, , .		0
333	Frequency perturbation integral for FBAR mass sensors and frequency shifts due to nonuniform mass layers. Applied Acoustics, 2021, 172, 107592.	1.7	О
334	On the Capacitance of Piezoelectric Metal–Insulator–Semiconductor Junctions. Ferroelectrics, Letters Section, 2021, 48, 1-12.	0.4	0
335	Fully Dynamic Theory. , 2009, , 247-280.		О
336	Linear Theory for Small Fields on a Finite Bias. Advances in Mechanics and Mathematics, 2018, , 193-205.	0.2	0
337	Nonlinear Theory of Electroelasticity. Advances in Mechanics and Mathematics, 2018, , 1-51.	0.2	0
338	Composite Structures., 2020,, 141-176.		0
339	Extension of Rods. , 2020, , 31-88.		0
340	Processing kinetics and thermomechanical responses of a meltâ€infiltrated piezoelectric ceramic composite. ZAMM Zeitschrift Fur Angewandte Mathematik Und Mechanik, 0, , .	0.9	0