Frederike Dijk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9082070/publications.pdf

Version: 2024-02-01

37	1,232	18	34
papers	citations	h-index	g-index
37	37	37	2751
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Analysis of the glyco-code in pancreatic ductal adenocarcinoma identifies glycan-mediated immune regulatory circuits. Communications Biology, 2022, 5, 41.	2.0	8
2	Circulating tumor DNA (ctDNA) analysis by low-coverage whole genome sequencing (lcWGS) of resectable esophageal adenocarcinoma (rEAC) patients Journal of Clinical Oncology, 2021, 39, 4033-4033.	0.8	0
3	Association of Genetic Variants Affecting microRNAs and Pancreatic Cancer Risk. Frontiers in Genetics, 2021, 12, 693933.	1.1	10
4	Bayesian log-normal deconvolution for enhanced in silico microdissection of bulk gene expression data. Nature Communications, 2021, 12, 6106.	5.8	7
5	Circulating tumor DNA quantity is related to tumor volume and both predict survival in metastatic pancreatic ductal adenocarcinoma. International Journal of Cancer, 2020, 146, 1445-1456.	2.3	67
6	CCAAT/Enhancer-Binding Protein Delta (C/EBPÎ): A Previously Unrecognized Tumor Suppressor that Limits the Oncogenic Potential of Pancreatic Ductal Adenocarcinoma Cells. Cancers, 2020, 12, 2546.	1.7	11
7	Macrophage-secreted MMP9 induces mesenchymal transition in pancreatic cancer cells via PAR1 activation. Cellular Oncology (Dordrecht), 2020, 43, 1161-1174.	2.1	40
8	Unsupervised class discovery in pancreatic ductal adenocarcinoma reveals cell-intrinsic mesenchymal features and high concordance between existing classification systems. Scientific Reports, 2020, 10, 337.	1.6	46
9	Genomeâ€wide association study identifies an early onset pancreatic cancer risk locus. International Journal of Cancer, 2020, 147, 2065-2074.	2.3	20
10	Highâ€grade mesenchymal pancreatic ductal adenocarcinoma drives stromal deactivation through CSFâ€1. EMBO Reports, 2020, 21, e48780.	2.0	29
11	Prognostic immunohistochemical biomarkers of chemotherapy efficacy in biliary tract cancer: A systematic review and meta-analysis. Critical Reviews in Oncology/Hematology, 2019, 141, 82-94.	2.0	11
12	Unravelling the Diagnostic Dilemma: A MicroRNA Panel of Circulating MiR-16 and MiR-877 as A Diagnostic Classifier for Distal Bile Duct Tumors. Cancers, 2019, 11, 1181.	1.7	16
13	Time-Dependent Impact of Irreversible Electroporation on Pathology and Ablation Size in the Porcine Liver: A 24-Hour Experimental Study. Technology in Cancer Research and Treatment, 2019, 18, 153303381987689.	0.8	18
14	The Dutch Pancreas Biobank Within the Parelsnoer Institute. Pancreas, 2018, 47, 495-501.	0.5	8
15	Genome-wide meta-analysis identifies five new susceptibility loci for pancreatic cancer. Nature Communications, 2018, 9, 556.	5.8	188
16	Tumor manipulation during pancreatic resection for pancreatic cancer induces dissemination of tumor cells into the peritoneal cavity: a systematic review. Hpb, 2018, 20, 289-296.	0.1	5
17	Dilemmas for the pathologist in the oncologic assessment of pancreatoduodenectomy specimens. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2018, 472, 533-543.	1.4	32
18	Do pancreatic cancer and chronic pancreatitis share the same genetic risk factors? A PANcreatic Disease ReseArch (PANDoRA) consortium investigation. International Journal of Cancer, 2018, 142, 290-296.	2.3	14

#	Article	IF	CITATIONS
19	Clinical value of ctDNA in upper-GI cancers: A systematic review and meta-analysis. Biochimica Et Biophysica Acta: Reviews on Cancer, 2017, 1868, 394-403.	3.3	45
20	Long-term follow-up of neoplastic pancreatic cysts without high-risk stigmata: how often do we change treatment strategy because of malignant transformation?. Scandinavian Journal of Gastroenterology, 2016, 51, 1138-1143.	0.6	6
21	Prognostic value of occult tumor cells obtained by peritoneal lavage in patients with resectable pancreatic cancer and no ascites: A systematic review. Journal of Surgical Oncology, 2016, 114, 743-751.	0.8	13
22	Time-Dependent Impact of Irreversible Electroporation on Pancreas, Liver, Blood Vessels and Nerves: A Systematic Review of Experimental Studies. PLoS ONE, 2016, 11, e0166987.	1.1	63
23	Functional single nucleotide polymorphisms within the cyclin-dependent kinase inhibitor 2A/2B region affect pancreatic cancer risk. Oncotarget, 2016, 7, 57011-57020.	0.8	41
24	Establishment of patient-derived xenograft models and cell lines for malignancies of the upper gastrointestinal tract. Journal of Translational Medicine, 2015, 13, 115.	1.8	60
25	HLA-G Expression Is an Independent Predictor for Improved Survival in High Grade Ovarian Carcinomas. Journal of Immunology Research, 2014, 2014, 1-11.	0.9	47
26	Expression signature in peripheral blood cells for molecular diagnosis of head and neck squamous cell carcinoma. Oral Diseases, 2013, 19, 452-455.	1.5	7
27	Molecular diagnosis of minimal residual disease in head and neck cancer patients. Cellular Oncology (Dordrecht), 2012, 35, 367-375.	2.1	10
28	Expression of the Antiapoptotic Protein BAG3 Is a Feature of Pancreatic Adenocarcinoma and Its Overexpression Is Associated With Poorer Survival. American Journal of Pathology, 2012, 181, 1524-1529.	1.9	53
29	GAP-43 expression is upregulated in retinal ganglion cells after ischemia/reperfusion-induced damage. Experimental Eye Research, 2007, 84, 858-867.	1.2	49
30	Transfer of lens-specific transcripts to retinal RNA samples may underlie observed changes in crystallin-gene transcript levels after ischemia. Molecular Vision, 2007, 13, 220-8.	1.1	8
31	Circadian expression of clock genes and clock-controlled genes in the rat retina. Biochemical and Biophysical Research Communications, 2005, 330, 18-26.	1.0	95
32	Ischemia-Induced Changes of AMPA-Type Glutamate Receptor Subunit Expression Pattern in the Rat Retina: A Real-Time Quantitative PCR Study. , 2004, 45, 330.		49
33	Ischemia-induced Alterations of AMPA-type glutamate receptor subunit. Expression patterns in the rat retina—an immunocytochemical study. Brain Research, 2004, 997, 207-221.	1.1	32
34	An immunocytochemical study on specific amacrine cell subpopulations in the rat retina after ischemia. Brain Research, 2004, 1026, 205-217.	1.1	44
35	Differential effects of ischemia/reperfusion on amacrine cell subtype-specific transcript levels in the rat retina. Brain Research, 2004, 1026, 194-204.	1.1	41
36	Expression of AMPA-type glutamate receptor subunit (GluR2) in ON-bipolar neurons in the rat retina. Journal of Comparative Neurology, 2003, 455, 172-186.	0.9	24

Frederike Dijk

#	Article	IF	CITATIONS
37	Gene expression of AMPA-type glutamate receptor subunits in rod-type ON bipolar cells of rat retina. European Journal of Neuroscience, 2003, 18, 1085-1092.	1.2	15