Mahmoud S Soliman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9081573/publications.pdf

Version: 2024-02-01

60 papers

1,352 citations

³⁹⁴²⁸⁶
19
h-index

35 g-index

61 all docs

61 docs citations

61 times ranked

1088 citing authors

#	Article	IF	Citations
1	Effect of Heat Treatment on Tensile Properties and Microstructure of Co-Free, Low Ni-10 Mo-1.2 Ti Maraging Steel. Materials, 2022, 15, 2136.	1.3	5
2	Effect of Molybdenum Content on the Corrosion and Microstructure of Low-Ni, Co-Free Maraging Steels. Metals, 2021, 11, 852.	1.0	3
3	Alloying Elements Effects on Electrical Conductivity and Mechanical Properties of Newly Fabricated Al Based Alloys Produced by Conventional Casting Process. Materials, 2021, 14, 3971.	1.3	26
4	Comparison of Mechanical and Microstructural Properties of as-Cast Al-Cu-Mg-Ag Alloys: Room Temperature vs. High Temperature. Crystals, 2021, 11, 1330.	1.0	6
5	Evaluation of Strength and Microstructural Properties of Heat Treated High-Molybdenum Content Maraging Steel. Crystals, 2021, 11, 1446.	1.0	5
6	Tribo-Behavior and Corrosion Properties of Welded 304L and 316L Stainless Steel. Coatings, 2021, 11, 1567.	1.2	3
7	An adaptive design for cost, quality and productivity-oriented sustainable machining of stainless steel 316. Journal of Materials Research and Technology, 2020, 9, 14568-14581.	2.6	15
8	Effects of Mg Content on the Microstructural and Mechanical Properties of Al-4Cu-xMg-0.3Ag Alloys. Crystals, 2020, 10, 895.	1.0	6
9	Sustainable and Smart Manufacturing: An Integrated Approach. Sustainability, 2020, 12, 2280.	1.6	97
10	Sustainability assessment associated with surface roughness and power consumption characteristics in nanofluid MQL-assisted turning of AISI 1045 steel. International Journal of Advanced Manufacturing Technology, 2019, 105, 1311-1327.	1.5	117
11	Effect of Feed Rate in FSW on the Mechanical and Microstructural Properties of AA5754 Joints. Advances in Materials Science and Engineering, 2019, 2019, 1-12.	1.0	36
12	Effect of tensile strain rate on high-temperature deformation and fracture of rolled Al-15†vol% B4C composite. Materials Science & Description (Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 749, 129-136.	2.6	21
13	Taguchi Robust Design for Optimizing Surface Roughness of Turned AISI 1045 Steel Considering the Tool Nose Radius and Coolant as Noise Factors. Advances in Materials Science and Engineering, 2018, 2018, 1-9.	1.0	8
14	ANN Surface Roughness Optimization of AZ61 Magnesium Alloy Finish Turning: Minimum Machining Times at Prime Machining Costs. Materials, 2018, 11, 808.	1.3	55
15	Artificial Intelligence Monitoring of Hardening Methods and Cutting Conditions and Their Effects on Surface Roughness, Performance, and Finish Turning Costs of Solid-State Recycled Aluminum Alloy 6061 θ_1 hips. Metals, 2018, 8, 394.	1.0	45
16	Statistical Model for the Mechanical Properties of Al-Cu-Mg-Ag Alloys at High Temperatures. Advances in Materials Science and Engineering, 2017, 2017, 1-13.	1.0	5
17	Transition from Superplastic Behavior - Viscous Glide - Dislocation Climb - Power-Law Break down Regimes in Friction Stir Processed AA5083. Materials Science Forum, 2016, 863, 23-30.	0.3	0
18	Correlation of Grain Size, Stacking Fault Energy, and Texture in Cu-Al Alloys Deformed under Simulated Rolling Conditions. Advances in Materials Science and Engineering, 2015, 2015, 1-12.	1.0	8

#	Article	IF	Citations
19	The fracture strength of cryomilled 99.7 Al nanopowders consolidated by high frequency induction sintering. IOP Conference Series: Materials Science and Engineering, 2014, 63, 012025.	0.3	O
20	Nanocrystalline 6061 Al Powder Fabricated by Cryogenic Milling and Consolidated via High Frequency Induction Heat Sintering. Advances in Materials Science and Engineering, 2014, 2014, 1-9.	1.0	5
21	Austenite Grain Growth Kinetics in API X65 and X70 Line-Pipe Steels during Isothermal Heating. Advances in Materials Science and Engineering, 2014, 2014, 1-8.	1.0	10
22	Mechanical properties and fracture of Al–15 vol%B ₄ C based metal matrix composites. International Journal of Cast Metals Research, 2014, 27, 7-14.	0.5	37
23	Metallurgical parameters controlling matrix/B ₄ C particulate interaction in aluminium–boron carbide metal matrix composites. International Journal of Cast Metals Research, 2013, 26, 364-373.	0.5	19
24	Mechanical Characterization of Cryomilled Al Powder Consolidated by High-Frequency Induction Heat Sintering. Advances in Materials Science and Engineering, 2013, 2013, 1-10.	1.0	4
25	Effect of Equal-Channel Angular Pressing Process on Properties of 1050 Al Alloy. Materials and Manufacturing Processes, 2012, 27, 746-750.	2.7	35
26	Effect of equal-channel angular pressing on superplastic behavior of eutectic Pb–Sn alloy. Materials & Design, 2012, 34, 235-241.	5.1	9
27	Creep characteristics and microstructure in nano-particle strengthened AA6082. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 531, 35-44.	2.6	19
28	Enhancement of static and fatigue strength of 1050 Al processed by equal-channel angular pressing using two routes. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 532, 120-129.	2.6	21
29	Low temperature enhanced ductility of friction stir processed 5083 aluminum alloy. Bulletin of Materials Science, 2011, 34, 1447-1453.	0.8	10
30	EBSD investigation of the microstructure and microtexture evolution of 1050 aluminum cross deformed from ECAP to plane strain compression. Journal of Materials Science, 2011, 46, 3291-3308.	1.7	19
31	Role of stacking fault energy on the deformation characteristics of copper alloys processed by plane strain compression. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 7579-7588.	2.6	22
32	High-temperature deformation and enhanced ductility of friction stir processed-7010 Aluminum Alloy. Materials & Design, 2011, 32, 1916-1922.	5.1	9
33	Effect of deformation path change on plastic response and texture evolution for 1050 Al pre-deformed by ECAP and subsequently plane strain compressed. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 2547-2558.	2.6	13
34	Friction stir processing: An effective technique to refine grain structure and enhance ductility. Materials & Design, 2010, 31, 1231-1236.	5.1	100
35	Static and Cyclic Deformation of Commercially Pure Al Processed by Equal-Channel Angular Pressing Using Two Routes. Materials Science Forum, 2010, 667-669, 833-838.	0.3	1
36	Texture Manipulation in Commercial Purity Aluminum by Deformation Path Change from ECAP to Plane Strain Compression. Materials Science Forum, 2010, 667-669, 445-450.	0.3	0

#	Article	IF	CITATIONS
37	Developed Models for Understanding and Predicting the Machinability of a Hardened Martensitic Stainless Steel. Materials and Manufacturing Processes, 2010, 25, 758-768.	2.7	12
38	Effect of combining plane-strain compression with equal channel angular pressing on mechanical properties and texture development in an Al alloy. Journal of Materials Science, 2009, 44, 5654-5661.	1.7	10
39	Effect of Solution Heat Treatment on the Hot Workability of Al–Mg–Si Alloy. Materials and Manufacturing Processes, 2009, 24, 637-643.	2.7	15
40	Hot deformation of AA6082-T4 aluminum alloy. Journal of Materials Science, 2008, 43, 6324-6330.	1.7	33
41	High-Temperature Deformation and Ductility of a Modified 5083 Al Alloy. Journal of Materials Engineering and Performance, 2008, 17, 572-579.	1.2	16
42	Enhancement of mechanical properties and grain size refinement of commercial purity aluminum 1050 processed by ECAP. Materials Science & Description A: Structural Materials: Properties, Microstructure and Processing, 2007, 458, 226-234.	2.6	179
43	Superplastic Characteristics of Fine-Grained 7475 Aluminum Alloy. Journal of Materials Engineering and Performance, 2006, 15, 76-80.	1.2	15
44	Significance of solute concentration dependence of climb-controlled creep rates in dilute solid solution alloys. Journal of Materials Science Letters, 1995, 14, 1155-1157.	0.5	2
45	Effect of Cu concentration on the high-temperature creep behavior of Alî—,Cu solid solution alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1995, 201, 111-117.	2.6	21
46	Effect of strain rate and grain size on the ductility of superplastic Pb-62% Sn eutectic at room temperature. Scripta Metallurgica Et Materialia, 1995, 33, 919-924.	1.0	9
47	Superplastic characteristics of the Pb-62% Sn eutectic alloy at room temperature. Scripta Metallurgica Et Materialia, 1994, 31, 439-444.	1.0	8
48	An investigation of the creep behaviour of Pbî—,9Sn,Znî—,4OAl and Auî—,10Ni alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1989, 112, 21-24.	2.6	3
49	Appropriate diffusion coefficients for dislocation creep in solid-solution alloys. Journal of Materials Science Letters, 1988, 7, 1027-1030.	0.5	9
50	Breakdown of the power-law creep in a Class I Al-10 at % Zn alloy. Journal of Materials Science, 1987, 22, 3529-3532.	1.7	16
51	Creep curves of Alî—,Mg alloys at very low stresses. Materials Science and Engineering, 1985, 68, L23-L25.	0.1	3
52	Effect of stress reduction ratio on the creep behaviour of Al. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 1985, 51, 559-574.	0.7	16
53	Effect of creep substructure on the stress exponent of Al following stress reductions. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 1984, 50, 9-24.	0.7	11
54	Creep transitions in an Al-Zn alloy. Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science, 1984, 15, 1893-1904.	1.4	76

#	Article	IF	Citations
55	An investigation of the stress exponent and subgrain size in Al after stress reduction. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 1983, 48, 63-81.	0.7	38
56	On the creep behavior of uranium dioxide. Materials Science and Engineering, 1982, 53, 185-190.	0.1	20
57	Correlation between creep behavior and substructure in an Al-3at.%Mg solid solution alloy. Materials Science and Engineering, 1982, 55, 111-119.	0.1	43
58	Effect of Heat Treatment Conditions on the High Temperature Deformation of 6082-Al Alloy. Advanced Materials Research, 0, 83-86, 407-414.	0.3	3
59	Microstructural and Mechanical Characterization of Friction Stir Welded- 1050 Aluminium Alloy. Advanced Materials Research, 0, 83-86, 1173-1181.	0.3	0
60	Why Al-B4C Metal Matrix Composites? A Review. , 0, , .		O