Jin Gu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9081150/publications.pdf

Version: 2024-02-01

		394421	434195
32	1,785	19	31
papers	1,785 citations	h-index	g-index
35	35	35	2619
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Multifaceted Spatial and Functional Zonation of Cardiac Cells in Adult Human Heart. Circulation, 2022, 145, 315-318.	1.6	8
2	JEBIN: analyzing gene co-expressions across multiple datasets by joint network embedding. Briefings in Bioinformatics, 2022, 23, .	6.5	1
3	Highly Regional Genes: graph-based gene selection for single-cell RNA-seq data. Journal of Genetics and Genomics, 2022, 49, 891-899.	3.9	11
4	Elucidating minimal residual disease of paediatric B-cell acute lymphoblastic leukaemia by single-cell analysis. Nature Cell Biology, 2022, 24, 242-252.	10.3	14
5	scCancer: a package for automated processing of single-cell RNA-seq data in cancer. Briefings in Bioinformatics, 2021, 22, .	6.5	35
6	Integrative Genomic Analysis of Gemcitabine Resistance in Pancreatic Cancer by Patient-derived Xenograft Models. Clinical Cancer Research, 2021, 27, 3383-3396.	7.0	36
7	Discovery of a Carbamoyl Phosphate Synthetase $1\hat{a}\in$ Deficient HCC Subtype With Therapeutic Potential Through Integrative Genomic and Experimental Analysis. Hepatology, 2021, 74, 3249-3268.	7.3	26
8	Comprehensive analysis of spatial architecture in primary liver cancer. Science Advances, 2021, 7, eabg 3750.	10.3	113
9	Trajectory and Functional Analysis of PDâ€1 ^{high} CD4 ⁺ CD8 ⁺ T Cells in Hepatocellular Carcinoma by Singleâ€Cell Cytometry and Transcriptome Sequencing. Advanced Science, 2020, 7, 2000224.	11.2	62
10	Hexosamine pathway inhibition overcomes pancreatic cancer resistance to gemcitabine through unfolded protein response and EGFR-Akt pathway modulation. Oncogene, 2020, 39, 4103-4117.	5.9	33
11	Effects of somatic alterations at pathway level are more mechanismâ€explanatory and clinically applicable to quantity of liver metastases of colorectal cancer. Cancer Medicine, 2019, 8, 4732-4742.	2.8	1
12	Integrative molecular analysis of metastatic hepatocellular carcinoma. BMC Medical Genomics, 2019, 12, 164.	1.5	11
13	Genome-wide DNA methylation analysis identifies candidate epigenetic markers and drivers of hepatocellular carcinoma. Briefings in Bioinformatics, 2018, 19, bbw094.	6.5	53
14	VASC: Dimension Reduction and Visualization of Single-cell RNA-seq Data by Deep Variational Autoencoder. Genomics, Proteomics and Bioinformatics, 2018, 16, 320-331.	6.9	176
15	HCCDB: A Database of Hepatocellular Carcinoma Expression Atlas. Genomics, Proteomics and Bioinformatics, 2018, 16, 269-275.	6.9	218
16	Choline Kinase \hat{l}_{\pm} Mediates Interactions Between the Epidermal Growth Factor Receptor and Mechanistic Target of Rapamycin Complex 2 in Hepatocellular Carcinoma Cells to Promote Drug Resistance and Xenograft Tumor Progression. Gastroenterology, 2017, 152, 1187-1202.	1.3	48
17	Recurrently deregulated IncRNAs in hepatocellular carcinoma. Nature Communications, 2017, 8, 14421.	12.8	279
18	Network embedding-based representation learning for single cell RNA-seq data. Nucleic Acids Research, 2017, 45, e166-e166.	14.5	54

#	Article	IF	CITATIONS
19	Evaluating the molecule-based prediction of clinical drug responses in cancer. Bioinformatics, 2016, 32, 2891-2895.	4.1	113
20	Integrative clustering methods of multiâ€omics data for moleculeâ€based cancer classifications. Quantitative Biology, 2016, 4, 58-67.	0.5	51
21	Fast dimension reduction and integrative clustering of multi-omics data using low-rank approximation: application to cancer molecular classification. BMC Genomics, 2015, 16, 1022.	2.8	124
22	SCT Promoter Methylation Is a Highly Discriminative Biomarker for Lung and Many Other Cancers. IEEE Life Sciences Letters, 2015, 1, 30-33.	1.2	2
23	Gene module based regulator inference identifying miR-139 as a tumor suppressor in colorectal cancer. Molecular BioSystems, 2014, 10, 3249-3254.	2.9	13
24	Inferring the perturbed microRNA regulatory networks from gene expression data using a network propagation based method. BMC Bioinformatics, 2014, 15, 255.	2.6	10
25	OncomiRDB: a database for the experimentally verified oncogenic and tumor-suppressive microRNAs. Bioinformatics, 2014, 30, 2237-2238.	4.1	141
26	FastDMA: An Infinium HumanMethylation450 Beadchip Analyzer. PLoS ONE, 2013, 8, e74275.	2.5	25
27	Inferring the Perturbed microRNA Regulatory Networks in Cancer Using Hierarchical Gene Co-Expression Signatures. PLoS ONE, 2013, 8, e81032.	2.5	9
28	Towards integrative annotation of the cell-type specific gene functional and signaling map in vascular endothelial cells. Molecular BioSystems, 2012, 8, 2041.	2.9	5
29	Identification of responsive gene modules by network-based gene clustering and extending: application to inflammation and angiogenesis. BMC Systems Biology, 2010, 4, 47.	3.0	56
30	Computational identification of 99 insect MicroRNAs using comparative genomics. Tsinghua Science and Technology, 2008, 13, 425-432.	6.1	2
31	Identifications of conserved 7-mers in 3'-UTRs and microRNAs in Drosophila. BMC Bioinformatics, 2007, 8, 432.	2.6	12
32	Primary transcripts and expressions of mammal intergenic microRNAs detected by mapping ESTs to their flanking sequences. Mammalian Genome, 2006, 17, 1033-1041.	2.2	33