
Anamarija Rogina

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9080448/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bone-mimetic porous hydroxyapatite/whitlockite scaffolds: preparation, characterization and interactions with human mesenchymal stem cells. Journal of Materials Science, 2021, 56, 3947-3969.	1.7	20
2	Metal ion-assisted formation of porous chitosan-based microspheres for biomedical applications. International Journal of Polymeric Materials and Polymeric Biomaterials, 2021, 70, 1027-1035.	1.8	5
3	Electrosprayed Chitosan–Copper Complex Microspheres with Uniform Size. Materials, 2021, 14, 5630.	1.3	9
4	Characterization of Chitosan-Based Scaffolds Seeded with Sheep Nasal Chondrocytes for Cartilage Tissue Engineering. Annals of Biomedical Engineering, 2021, 49, 1572-1586.	1.3	10
5	The bioactivity of titanium-cuttlefish bone-derived hydroxyapatite composites sintered at low temperature. Powder Metallurgy, 2020, 63, 300-310.	0.9	7
6	Tuning physicochemical and biological properties of chitosan through complexation with transition metal ions. International Journal of Biological Macromolecules, 2019, 129, 645-652.	3.6	20
7	Combined Chemical and Thermal Sintering for High Conductivity Inkjet-printed Silver Nanoink on Flexible Substrates. Chemical and Biochemical Engineering Quarterly, 2019, 33, 377-384.	0.5	14
8	Biomimetic design of bone substitutes based on cuttlefish boneâ€derived hydroxyapatite and biodegradable polymers. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2019, 107, 197-204.	1.6	35
9	Preparation of 3D Porous Scaffolds for Bone Tissue Engineering. Kemija U Industriji, 2019, 68, 457-468.	0.2	0
10	Bone-Mimicking Injectable Gelatine/Hydroxyapatite Hydrogels. Chemical and Biochemical Engineering Quarterly, 2019, 33, 325-335.	0.5	5
11	Synthesis and Electrochemical Characterization of AgNP Ink Suitable for Inkjet Printing. International Journal of Electrochemical Science, 2018, 13, 11136-11149.	0.5	13
12	Injectable chitosan-hydroxyapatite hydrogels promote the osteogenic differentiation of mesenchymal stem cells. Carbohydrate Polymers, 2018, 197, 469-477.	5.1	59
13	Cellular hydrogels based on pH-responsive chitosan-hydroxyapatite system. Carbohydrate Polymers, 2017, 166, 173-182.	5.1	71
14	Human Mesenchymal Stem Cells Differentiation Regulated by Hydroxyapatite Content within Chitosan-Based Scaffolds under Perfusion Conditions. Polymers, 2017, 9, 387.	2.0	21
15	Lysozyme-Induced Degradation of Chitosan: The Characterisation of Degraded Chitosan Scaffolds. Journal of Tissue Repair and Regeneration, 2017, 1, 12-22.	2.0	55
16	Macroporous poly(lactic acid) construct supporting the osteoinductive porous chitosan-based hydrogel for bone tissue engineering. Polymer, 2016, 98, 172-181.	1.8	48
17	In Situ Hydroxyapatite Content Affects the Cell Differentiation on Porous Chitosan/Hydroxyapatite Scaffolds. Annals of Biomedical Engineering, 2016, 44, 1107-1119.	1.3	19
18	Effect of in situ formed hydroxyapatite on microstructure of freeze-gelled chitosan-based biocomposite scaffolds. European Polymer Journal, 2015, 68, 278-287.	2.6	34

#	Article	IF	CITATIONS
19	Electrospinning process: Versatile preparation method for biodegradable and natural polymers and biocomposite systems applied in tissue engineering and drug delivery. Applied Surface Science, 2014, 296, 221-230.	3.1	218
20	Preparation and characterization of nano-hydroxyapatite within chitosan matrix. Materials Science and Engineering C, 2013, 33, 4539-4544.	3.8	49
21	Styrene–butadiene latex modified calcium aluminate cement mortar. Cement and Concrete Composites, 2013, 41, 16-23.	4.6	80
22	Soft sensor for continuous product quality estimation (in crude distillation unit). Chemical Engineering Research and Design, 2011, 89, 2070-2077.	2.7	32