
Erika V S Albuquerque

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9080399/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Brazilian coffee genome project: an EST-based genomic resource. Brazilian Journal of Plant Physiology, 2006, 18, 95-108.	0.5	112
2	Implications of ethylene biosynthesis and signaling in soybean drought stress tolerance. BMC Plant Biology, 2015, 15, 213.	3.6	110
3	Transcription profile of soybean-root-knot nematode interaction reveals a key role of phythormones in the resistance reaction. BMC Genomics, 2013, 14, 322.	2.8	56
4	Investigating Engineered Ribonucleoprotein Particles to Improve Oral RNAi Delivery in Crop Insect Pests. Frontiers in Physiology, 2017, 8, 256.	2.8	53
5	α-Amylase inhibitor-1 gene from Phaseolus vulgaris expressed in Coffea arabicaplants inhibits α-amylases from the coffee berry borer pest. BMC Biotechnology, 2010, 10, 44.	3.3	50
6	Nocardia cerradoensis sp. nov., a novel isolate from Cerrado soil in Brazil. International Journal of Systematic and Evolutionary Microbiology, 2003, 53, 29-33.	1.7	49
7	Resistance to Meloidogyne incognita expresses a hypersensitive-like response in Coffea arabica. European Journal of Plant Pathology, 2010, 127, 365-373.	1.7	36
8	Rice susceptibility to root-knot nematodes is enhanced by the Meloidogyne incognita MSP18 effector gene. Planta, 2019, 250, 1215-1227.	3.2	23
9	Population genomics supports clonal reproduction and multiple independent gains and losses of parasitic abilities in the most devastating nematode pest. Evolutionary Applications, 2020, 13, 442-457.	3.1	23
10	Transgenic coffee fruits from Coffea arabica genetically modified by bombardment. In Vitro Cellular and Developmental Biology - Plant, 2009, 45, 532-539.	2.1	21
11	A Comprehensive Review of the Coffee Leaf Miner Leucoptera coffeella (Lepidoptera: Lyonetiidae)—A Major Pest for the Coffee Crop in Brazil and Others Neotropical Countries. Insects, 2021, 12, 1130.	2.2	20
12	Promoter analysis of the WRKY transcription factors CaWRKY1a and CaWRKY1b homoeologous genes in coffee (Coffea arabica). Plant Cell Reports, 2013, 32, 1263-1276.	5.6	19
13	Inhibitory action of Cerrado plants against mammalian and insect α-amylases. Pesticide Biochemistry and Physiology, 2009, 95, 141-146.	3.6	18
14	Meloidogyne incognita PASSE-MURAILLE (MiPM) Gene Encodes a Cell-Penetrating Protein That Interacts With the CSN5 Subunit of the COP9 Signalosome. Frontiers in Plant Science, 2018, 9, 904.	3.6	17
15	Transcriptome and gene expression analysis of three developmental stages of the coffee berry borer, Hypothenemus hampei. Scientific Reports, 2019, 9, 12804.	3.3	17
16	Evolutionarily conserved plant genes responsive to root-knot nematodes identified by comparative genomics. Molecular Genetics and Genomics, 2020, 295, 1063-1078.	2.1	14
17	METHODOLOGICAL EVALUATION OF 2-DE TO STUDY ROOT PROTEOMICS DURING NEMATODE INFECTION IN COTTON AND COFFEE PLANTS. Preparative Biochemistry and Biotechnology, 2010, 40, 152-163.	1.9	12
18	A Chemosensory GPCR as a Potential Target to Control the Root-Knot Nematode Meloidogyne incognita Parasitism in Plants. Molecules. 2019. 24. 3798.	3.8	11

Erika V S Albuquerque

#	Article	IF	CITATIONS
19	Differentially expressed genes in cotton plant genotypes infected with Meloidogyne incognita. Plant Science, 2009, 177, 492-497.	3.6	9
20	Molecular cloning and characterization of an α-amylase cDNA highly expressed in major feeding stages of the coffee berry borer, Hypothenemus hampei. Gene, 2014, 553, 7-16.	2.2	9
21	Employing in vitro directed molecular evolution for the selection of α-amylase variant inhibitors with activity toward cotton boll weevil enzyme. Journal of Biotechnology, 2013, 167, 377-385.	3.8	7
22	Early responses of coffee immunity-related genes to root-knot nematode infection. Physiological and Molecular Plant Pathology, 2017, 100, 142-150.	2.5	7
23	Seed-Specific Stable Expression of the α-Al1 Inhibitor in Coffee Grains and the In Vivo Implications for the Development of the Coffee Berry Borer. Tropical Plant Biology, 2015, 8, 98-107.	1.9	5
24	The coffee leaf miner, Leucoptera coffeella (Lepidoptera: Lyonetiidae): identification of the larval instars and description of male and female genitalia. Revista Brasileira De Entomologia, 2021, 65, .	0.4	5
25	A novel cloning system for direct screening using a suicidal strategy. Gene, 1996, 179, 287-289.	2.2	3
26	Searching in Silico Novel Targets for Specific Coffee Rust Disease Control. Lecture Notes in Computer Science, 2020, , 109-115.	1.3	1