List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9080243/publications.pdf

Version: 2024-02-01

#	Article	lF	CITATIONS
1	Application of Collagen Scaffold in Tissue Engineering: Recent Advances and New Perspectives. Polymers, 2016, 8, 42.	2.0	513
2	3D Scaffolds with Different Stiffness but the Same Microstructure for Bone Tissue Engineering. ACS Applied Materials & amp; Interfaces, 2015, 7, 15790-15802.	4.0	156
3	Electrospun poly (É>-caprolactone)/silk fibroin core-sheath nanofibers and their potential applications in tissue engineering and drug release. International Journal of Biological Macromolecules, 2011, 49, 223-232.	3.6	134
4	The use of hyaluronan to regulate protein adsorption and cell infiltration in nanofibrous scaffolds. Biomaterials, 2012, 33, 3428-3445.	5.7	114
5	Mechano growth factor (MGF) and transforming growth factor (TGF)-β3 functionalized silk scaffolds enhance articular hyaline cartilage regeneration in rabbit model. Biomaterials, 2015, 52, 463-475.	5.7	111
6	Dual-delivery of VECF and NCF by emulsion electrospun nanofibrous scaffold for peripheral nerve regeneration. Materials Science and Engineering C, 2018, 82, 253-264.	3.8	102
7	Human iPSC-Derived Neural Crest Stem Cells Promote Tendon Repair in a Rat Patellar Tendon Window Defect Model. Tissue Engineering - Part A, 2013, 19, 2439-2451.	1.6	85
8	RNA-based scaffolds for bone regeneration: application and mechanisms of mRNA, miRNA and siRNA. Theranostics, 2020, 10, 3190-3205.	4.6	83
9	Scaffold strategies for modulating immune microenvironment during bone regeneration. Materials Science and Engineering C, 2020, 108, 110411.	3.8	67
10	Effects of low-intensity pulsed ultrasound on cell viability, proliferation and neural differentiation of induced pluripotent stem cells-derived neural crest stem cells. Biotechnology Letters, 2013, 35, 2201-2212.	1.1	56
11	Demineralized Bone Scaffolds with Tunable Matrix Stiffness for Efficient Bone Integration. ACS Applied Materials & Interfaces, 2018, 10, 27669-27680.	4.0	53
12	In vivo repair of rat transected sciatic nerve by low-intensity pulsed ultrasound and induced pluripotent stem cells-derived neural crest stem cells. Biotechnology Letters, 2015, 37, 2497-2506.	1.1	46
13	Decellularized Bone Matrix Scaffold for Bone Regeneration. Methods in Molecular Biology, 2017, 1577, 239-254.	0.4	43
14	Reconstructing Bone with Natural Bone Graft: A Review of In Vivo Studies in Bone Defect Animal Model. Nanomaterials, 2018, 8, 999.	1.9	43
15	Feasibility study for thermal protection by microencapsulated phase change micro/nanoparticles during cryosurgery. Chemical Engineering Science, 2011, 66, 3941-3953.	1.9	39
16	Matrix Mechanics and Fluid Shear Stress Control Stem Cells Fate in Three Dimensional Microenvironment. Current Stem Cell Research and Therapy, 2013, 8, 313-323.	0.6	39
17	Mesenchymal stem cell-derived microvesicles mediate <i>BMP2</i> gene delivery and enhance bone regeneration. Journal of Materials Chemistry B, 2020, 8, 6378-6389.	2.9	36
18	Immobilization and Application of Electrospun Nanofiber Scaffold-based Growth Factor in Bone Tissue Engineering. Current Pharmaceutical Design, 2015, 21, 1967-1978.	0.9	36

#	Article	IF	CITATIONS
19	Effect of substrate stiffness on hepatocyte migration and cellular Young's modulus. Journal of Cellular Physiology, 2018, 233, 6996-7006.	2.0	35
20	Three-dimensional decellularized tumor extracellular matrices with different stiffness as bioengineered tumor scaffolds. Bioactive Materials, 2021, 6, 2767-2782.	8.6	35
21	Combined effects of TNFâ€Î±, ILâ€1β, and HIFâ€1α on MMPâ€2 production in ACL fibroblasts under mechanical stretch: An in vitro study. Journal of Orthopaedic Research, 2011, 29, 1008-1014.	1.2	33
22	Responses of MSCs to 3D Scaffold Matrix Mechanical Properties under Oscillatory Perfusion Culture. ACS Applied Materials & Interfaces, 2017, 9, 1207-1218.	4.0	33
23	Lowâ€intensity pulsed ultrasound combination with induced pluripotent stem cellsâ€derived neural crest stem cells and growth differentiation factor 5 promotes sciatic nerve regeneration and functional recovery. Journal of Tissue Engineering and Regenerative Medicine, 2019, 13, 625-636.	1.3	33
24	Stem cell recruitment based on scaffold features for bone tissue engineering. Biomaterials Science, 2021, 9, 1189-1203.	2.6	32
25	Suspension state promotes metastasis of breast cancer cells by up-regulating cyclooxygenase-2. Theranostics, 2018, 8, 3722-3736.	4.6	31
26	Cellâ€free scaffolds with different stiffness but same microstructure promote bone regeneration in rabbit large bone defect model. Journal of Biomedical Materials Research - Part A, 2016, 104, 833-841.	2.1	30
27	The effect of hyaluronan on the motility of skin dermal fibroblasts in nanofibrous scaffolds. International Journal of Biological Macromolecules, 2015, 79, 133-143.	3.6	29
28	Matrix Mechanics as Regulatory Factors and Therapeutic Targets in Hepatic Fibrosis. International Journal of Biological Sciences, 2019, 15, 2509-2521.	2.6	29
29	Graphene-based conductive fibrous scaffold boosts sciatic nerve regeneration and functional recovery upon electrical stimulation. Applied Materials Today, 2020, 21, 100870.	2.3	27
30	Differential response to CoCl2-stimulated hypoxia on HIF-1α, VEGF, and MMP-2 expression in ligament cells. Molecular and Cellular Biochemistry, 2012, 360, 235-242.	1.4	26
31	MGF E peptide pretreatment improves the proliferation and osteogenic differentiation of BMSCs via MEK-ERK1/2 and PI3K-Akt pathway under severe hypoxia. Life Sciences, 2017, 189, 52-62.	2.0	26
32	Demineralized and decellularized bone extracellular matrix-incorporated electrospun nanofibrous scaffold for bone regeneration. Journal of Materials Chemistry B, 2021, 9, 6881-6894.	2.9	25
33	Matrix elasticity-modified scaffold loaded with SDF-11± improves the in situ regeneration of segmental bone defect in rabbit radius. Scientific Reports, 2017, 7, 1672.	1.6	23
34	Preparation and Application of Magnetic Responsive Materials in Bone Tissue Engineering. Current Stem Cell Research and Therapy, 2020, 15, 428-440.	0.6	23
35	Effect of Internal Structure of Collagen/Hydroxyapatite Scaffold on the Osteogenic Differentiation of Mesenchymal Stem Cells. Current Stem Cell Research and Therapy, 2015, 10, 99-108.	0.6	22
36	Exosome derived from mesenchymal stem cells mediates hypoxia-specific BMP2 gene delivery and enhances bone regeneration. Chemical Engineering Journal, 2021, 422, 130084.	6.6	20

#	Article	IF	CITATIONS
37	Gene expression profiling analysis of the effects of lowâ€intensity pulsed ultrasound on induced pluripotent stem cell–derived neural crest stem cells. Biotechnology and Applied Biochemistry, 2017, 64, 927-937.	1.4	17
38	Suspension state increases reattachment of breast cancer cells by up-regulating lamin A/C. Biochimica Et Biophysica Acta - Molecular Cell Research, 2017, 1864, 2272-2282.	1.9	17
39	The Role of <i>N⁶</i> -Methyladenosine Modified Circular RNA in Pathophysiological Processes. International Journal of Biological Sciences, 2021, 17, 2262-2277.	2.6	16
40	The effect of silk gland sericin protein incorporation into electrospun polycaprolactone nanofibers on in vitro and in vivo characteristics. Journal of Materials Chemistry B, 2015, 3, 859-870.	2.9	15
41	Gene expression profiling of human hepatocytes grown on differing substrate stiffness. Biotechnology Letters, 2018, 40, 809-818.	1.1	15
42	MGF E peptide improves anterior cruciate ligament repair by inhibiting hypoxiaâ€induced cell apoptosis and accelerating angiogenesis. Journal of Cellular Physiology, 2019, 234, 8846-8861.	2.0	15
43	Mechano growth factor-E regulates apoptosis and inflammatory responses in fibroblast-like synoviocytes of knee osteoarthritis. International Orthopaedics, 2015, 39, 2503-2509.	0.9	14
44	A novel mechanical loading model for studying the distributions of strain and mechano-growth factor expression. Archives of Biochemistry and Biophysics, 2011, 511, 8-13.	1.4	13
45	MGF E peptide pretreatment improves collagen synthesis and cell proliferation of injured human ACL fibroblasts via MEK-ERK1/2 signaling pathway. Growth Factors, 2017, 35, 29-38.	0.5	13
46	Pretreatment with mechano-growth factor E peptide protects bone marrow mesenchymal cells against damage by fluid shear stress. Biotechnology Letters, 2014, 36, 2559-2569.	1.1	12
47	Matrix stiffness regulates bone repair by modulating 12-lipoxygenase-mediated early inflammation. Materials Science and Engineering C, 2021, 128, 112359.	3.8	12
48	A Pharmacokinetic Model for Radioimmunotherapy Delivered Through Cerebrospinal Fluid for the Treatment of Leptomeningeal Metastases. Journal of Nuclear Medicine, 2009, 50, 1324-1331.	2.8	11
49	Mechano-growth factor enhances differentiation of bone marrow-derived mesenchymal stem cells. Biotechnology Letters, 2015, 37, 2341-2348.	1.1	11
50	The use of mechano growth factor to prevent cartilage degeneration in knee osteoarthritis. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, 738-749.	1.3	10
51	Demineralized bone matrix scaffold modified with mRNA derived from osteogenically pre-differentiated MSCs improves bone repair. Materials Science and Engineering C, 2021, 119, 111601.	3.8	10
52	4-Octyl itaconate modified demineralized bone matrix scaffold improves bone repair by regulating early inflammation. Chemical Engineering Journal, 2021, 425, 131490.	6.6	10
53	Regulation of matrix stiffness on the epithelial-mesenchymal transition of breast cancer cells under hypoxia environment. Die Naturwissenschaften, 2017, 104, 38.	0.6	8
54	High mobility group box 1-immobilized nanofibrous scaffold enhances vascularization, osteogenesis and stem cell recruitment. Journal of Materials Chemistry B, 2016, 4, 5002-5014.	2.9	8

#	Article	IF	CITATIONS
55	Uncertainty and sensitivity analysis of properties of phase change micro/nanoparticles for thermal protection during cryosurgery. Forschung Im Ingenieurwesen/Engineering Research, 2012, 76, 41-50.	1.0	7
56	Effects of hypoxia on the biological behavior of MSCs seeded in demineralized bone scaffolds with different stiffness. Acta Mechanica Sinica/Lixue Xuebao, 2019, 35, 309-320.	1.5	7
57	Stem Cell-based Therapy Strategy for Hepatic Fibrosis by Targeting Intrahepatic Cells. Stem Cell Reviews and Reports, 2022, 18, 77-93.	1.7	7
58	Magnetic liquid metal scaffold with dynamically tunable stiffness for bone tissue engineering. , 2022, 139, 212975.		7
59	Suspension state regulates epithelial-to-mesenchymal transition and stemness of breast tumor cells. Biotechnology Letters, 2021, 43, 561-578.	1.1	6
60	Suspension state and shear stress enhance breast tumor cells EMT through YAP by microRNA-29b. Cell Biology and Toxicology, 2023, 39, 1037-1052.	2.4	6
61	Micromechanical Compatibility between Cells and Scaffolds Directs the Phenotypic Transition of Stem Cells. ACS Applied Materials & Interfaces, 2021, 13, 58152-58161.	4.0	6
62	Shear stress regulates the migration of suspended breast cancer cells by nuclear lamina protein A/C and large tumor suppressor through yes-associated protein. Human Cell, 2022, 35, 583-598.	1.2	6
63	Theoretical model for thermal protection by microencapsulated phase change micro/nanoparticles during hyperthermia. Heat and Mass Transfer, 2012, 48, 573-584.	1.2	5
64	Integration of QSAR modelling and QM/MM analysis to investigate functional food peptides with antihypertensive activity. Molecular Simulation, 2013, 39, 1000-1006.	0.9	5
65	Mechano growth factor-C24E, a potential promoting biochemical factor for ligament tissue engineering. Biochemical Engineering Journal, 2016, 105, 249-263.	1.8	5
66	ERK1/2 and Akt phosphorylation were essential for MGF E peptide regulating cell morphology and mobility but not proangiogenic capacity of BMSCs under severe hypoxia. Cell Biochemistry and Function, 2018, 36, 155-165.	1.4	5
67	Suspension State Promotes Drug Resistance of Breast Tumor Cells by Inducing ABCC3 Overexpression. Applied Biochemistry and Biotechnology, 2020, 190, 410-422.	1.4	5
68	Role of endothelial cells in the regulation of mechanical microenvironment on tumor progression. Acta Mechanica Sinica/Lixue Xuebao, 2021, 37, 218-228.	1.5	3
69	Application of Physical Stimulation in Stem Cell-based Tissue Engineering. Current Stem Cell Research and Therapy, 2020, 15, 389-390.	0.6	3
70	Mechano growth factor E peptide inhibits invasion of melanoma cells and up-regulates CHOP expression via endoplasmic reticulum stress. Biotechnology Letters, 2018, 40, 205-213.	1.1	2
71	Feasibility study on strengthening heating effect of high power short pulse laser on biological tissue by micro/nano metal particles. Heat and Mass Transfer, 2008, 44, 1455-1464.	1.2	1
72	Editorial (Thematic Issue: Nanofiber-based Drug Design, Delivery and Application). Current Pharmaceutical Design, 2015, 21, 1918-1919.	0.9	1

#	Article	IF	CITATIONS
73	A nonâ€invasive method for measuring solute permeability of rat pial microvessels. FASEB Journal, 2007, 21, A491.	0.2	0
74	Adhesion of wild type and integrin signaling defective mammary tumor cells to microvascular endothelium in vivo. FASEB Journal, 2007, 21, A487.	0.2	0