Shu-hong Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9080084/publications.pdf

Version: 2024-02-01

304368 329751 1,465 44 22 37 h-index citations g-index papers 44 44 44 1368 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Different interaction performance between microplastics and microalgae: The bio-elimination potential of Chlorella sp. L38 and Phaeodactylum tricornutum MASCC-0025. Science of the Total Environment, 2020, 723, 138146.	3.9	125
2	Purification, antitumor and immunomodulatory activity of polysaccharides from soybean residue fermented with Morchella esculenta. International Journal of Biological Macromolecules, 2017, 96, 26-34.	3.6	97
3	Preparation of cucumber seed peptide-calcium chelate by liquid state fermentation and its characterization. Food Chemistry, 2017, 229, 487-494.	4.2	94
4	Improved mechanical and antimicrobial properties of zein/chitosan films by adding highly dispersed nano-TiO2. Industrial Crops and Products, 2019, 130, 450-458.	2.5	91
5	Improving functional properties of zein film via compositing with chitosan and cold plasma treatment. Industrial Crops and Products, 2019, 129, 318-326.	2.5	88
6	Surface modification via atmospheric cold plasma (ACP): Improved functional properties and characterization of zein film. Industrial Crops and Products, 2018, 115, 124-133.	2.5	79
7	Behavior of Zein in Aqueous Ethanol under Atmospheric Pressure Cold Plasma Treatment. Journal of Agricultural and Food Chemistry, 2017, 65, 7352-7360.	2.4	57
8	Analysis of the glycosylation products of peanut protein and lactose by cold plasma treatment: Solubility and structural characteristics. International Journal of Biological Macromolecules, 2020, 158, 1194-1203.	3.6	57
9	Preparation, characterization and functional evaluation of chitosan-based films with zein coatings produced by cold plasma. Carbohydrate Polymers, 2018, 202, 39-46.	5.1	52
10	Complex coacervation of zein-chitosan via atmospheric cold plasma treatment: Improvement of encapsulation efficiency and dispersion stability. Food Hydrocolloids, 2020, 107, 105943.	5.6	48
11	Biodegradation and metabolic fate of thiamphenicol via Chlorella sp. UTEX1602 and L38. Bioresource Technology, 2020, 296, 122320.	4.8	46
12	Zein films with porous polylactic acid coatings via cold plasma pre-treatment. Industrial Crops and Products, 2020, 150, 112382.	2.5	44
13	Microalgae carbon fixation integrated with organic matters recycling from soybean wastewater: Effect of pH on the performance of hybrid system. Chemosphere, 2020, 248, 126094.	4.2	40
14	Structural changes of proteins in fresh noodles during their processing. International Journal of Food Properties, 2017, 20, S202-S213.	1.3	39
15	Evaluation of hydrolysis–esterification biodiesel production from wet microalgae. Bioresource Technology, 2016, 214, 747-754.	4.8	37
16	Quality characteristics of fresh wet noodles treated with nonthermal plasma sterilization. Food Chemistry, 2019, 297, 124900.	4.2	36
17	Moisture molecule migration and quality changes of fresh wet noodles dehydrated by cold plasma treatment. Food Chemistry, 2020, 328, 127053.	4.2	31
18	Optimization of fermentation conditions for crude polysaccharides by Morchella esculenta using soybean curd residue. Industrial Crops and Products, 2013, 50, 666-672.	2.5	29

#	Article	IF	CITATIONS
19	Preparation, characterization and calcium release evaluation in vitro of casein phosphopeptides-soluble dietary fibers copolymers as calcium delivery system. Food Chemistry, 2018, 245, 262-269.	4.2	26
20	A novel zein/poly (propylene carbonate)/nano-TiO2 composite films with enhanced photocatalytic and antibacterial activity. Process Biochemistry, 2018, 70, 198-205.	1.8	25
21	A novel concept of bicarbonate-carbon utilization via an absorption-microalgae hybrid process assisted with nutrient recycling from soybean wastewater. Journal of Cleaner Production, 2019, 237, 117864.	4.6	25
22	Performance intensification of CO2 absorption and microalgae conversion (CAMC) hybrid system via low temperature plasma (LTP) treatment. Science of the Total Environment, 2021, 801, 149791.	3.9	25
23	Characterization of physicochemical properties of fermented soybean curd residue by Morchella esculenta. International Biodeterioration and Biodegradation, 2016, 109, 113-118.	1.9	23
24	Synthesis and evaluation of highly dispersible and efficient photocatalytic TiO2/poly lactic acid nanocomposite films via sol-gel and casting processes. International Journal of Food Microbiology, 2020, 331, 108763.	2.1	22
25	Enhanced hydration properties and antioxidant activity of peanut protein by covalently binding with sesbania gum via cold plasma treatment. Innovative Food Science and Emerging Technologies, 2021, 68, 102632.	2.7	22
26	Developing a new modification technology of oat flour based on differential pressure explosion puffing. LWT - Food Science and Technology, 2021, 141, 110967.	2.5	21
27	Preparation of dextran-casein phosphopeptide conjugates, evaluation of its calcium binding capacity and digestion in vitro. Food Chemistry, 2021, 352, 129332.	4.2	21
28	Intensifying soluble dietary fiber production and properties of soybean curd residue via autoclaving treatment. Bioresource Technology Reports, 2019, 7, 100203.	1.5	19
29	Effect of different nitrogen ratio on the performance of CO2 absorption and microalgae conversion (CAMC) hybrid system. Bioresource Technology, 2020, 306, 123126.	4.8	19
30	A novel glycoprotein emulsion using high-denatured peanut protein and sesbania gum via cold plasma for encapsulation of \hat{l}^2 -carotene. Innovative Food Science and Emerging Technologies, 2021, 74, 102840.	2.7	17
31	Bio-regeneration of different rich CO2 absorption solvent via microalgae cultivation. Bioresource Technology, 2019, 290, 121781.	4.8	16
32	Novel Regeneration and Utilization Concept Using Rich Chemical Absorption Solvent As a Carbon Source for Microalgae Biomass Production. Industrial & Engineering Chemistry Research, 2019, 58, 11720-11727.	1.8	13
33	Polylactic Acid (PLA) Modified by Polyethylene Glycol (PEG) for the Immobilization of Lipase. Applied Biochemistry and Biotechnology, 2020, 190, 982-996.	1.4	13
34	Novel Bio-regeneration Concept via Using Rich Solution as Nutrition Resource for Microalgae Cultivation: Effect of pH and Feeding Modes. ACS Sustainable Chemistry and Engineering, 2019, 7, 14471-14478.	3.2	12
35	Modification of the physicochemical and structural characteristics of zein suspension by dielectric barrier discharge cold plasma treatment. Journal of Food Science, 2020, 85, 2452-2460.	1.5	12
36	Nitrite removal with potential value-added ingredients accumulation via Chlorella sp. L38. Bioresource Technology, 2020, 313, 123743.	4.8	10

#	Article	IF	CITATIONS
37	Polysaccharides production from soybean curd residue via <i>Morchella esculenta</i> , Journal of Food Biochemistry, 2019, 43, e12791.	1.2	9
38	Responses of Alpha-linolenic acid strain (C-12) from Chlorella sp. L166 to low temperature plasma treatment. Bioresource Technology, 2021, 336, 125291.	4.8	9
39	Solubilization mechanism and structural properties of highâ€denatured peanut protein treated by shearing. Journal of Food Process Engineering, 2022, 45, .	1.5	6
40	Purification, Characterization and Bioactivities of Polysaccharides from the Stalk of <i>Abelmoschus manihot</i> (L.) Medic. Food Science and Technology Research, 2020, 26, 611-621.	0.3	3
41	Mechanism of improving interfacial hydration characteristic of highâ€denatured peanut protein induced by cold plasma. Journal of Food Process Engineering, 2022, 45, e13926.	1.5	3
42	Effects of microwave on microscopic, hydration, and gelatinization properties of oat and its application on noodle processing. Journal of Food Processing and Preservation, 2022, 46, .	0.9	2
43	Rapid method for lipid determination in Chlorella sp. based on Nile Red fluorescence. Bioresource Technology Reports, 2022, 18, 101077.	1.5	2
44	Outside Cover Image, Volume 43, Issue 4. Journal of Food Biochemistry, 2019, 43, e12867.	1.2	0