Haining Tian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/907930/publications.pdf Version: 2024-02-01

HAINUNG TIAN

#	Article	IF	CITATIONS
1	Phenothiazine derivatives for efficient organic dye-sensitized solar cells. Chemical Communications, 2007, , 3741.	4.1	446
2	Effect of Different Dye Baths and Dye-Structures on the Performance of Dye-Sensitized Solar Cells Based on Triphenylamine Dyes. Journal of Physical Chemistry C, 2008, 112, 11023-11033.	3.1	432
3	Carbazoleâ€Based Holeâ€Transport Materials for Efficient Solidâ€State Dyeâ€Sensitized Solar Cells and Perovskite Solar Cells. Advanced Materials, 2014, 26, 6629-6634.	21.0	369
4	Effect of Tetrahydroquinoline Dyes Structure on the Performance of Organic Dye-Sensitized Solar Cells. Chemistry of Materials, 2007, 19, 4007-4015.	6.7	302
5	Highly Efficient CdS Quantum Dot-Sensitized Solar Cells Based on a Modified Polysulfide Electrolyte. Journal of the American Chemical Society, 2011, 133, 8458-8460.	13.7	257
6	Organic Redox Couples and Organic Counter Electrode for Efficient Organic Dye-Sensitized Solar Cells. Journal of the American Chemical Society, 2011, 133, 9413-9422.	13.7	227
7	An experimental and theoretical study of an efficient polymer nano-photocatalyst for hydrogen evolution. Energy and Environmental Science, 2017, 10, 1372-1376.	30.8	192
8	Organic Polymer Dots as Photocatalysts for Visible Lightâ€Driven Hydrogen Generation. Angewandte Chemie - International Edition, 2016, 55, 12306-12310.	13.8	191
9	Tetrahydroquinoline dyes with different spacers for organic dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2007, 189, 295-300.	3.9	170
10	Two Novel Carbazole Dyes for Dye-Sensitized Solar Cells with Open-Circuit Voltages up to 1 V Based on Br ^{â^'} /Br ₃ ^{â^'} Electrolytes. Organic Letters, 2009, 11, 5542-5545.	4.6	166
11	Solar cells sensitized with type-II ZnSe–CdS core/shell colloidal quantum dots. Chemical Communications, 2011, 47, 1536-1538.	4.1	161
12	Tuning of phenoxazine chromophores for efficient organic dye-sensitized solar cells. Chemical Communications, 2009, , 6288.	4.1	156
13	A metal-free "black dye―for panchromatic dye-sensitized solar cells. Energy and Environmental Science, 2009, 2, 674.	30.8	153
14	Initial Light Soaking Treatment Enables Hole Transport Material to Outperform Spiro-OMeTAD in Solid-State Dye-Sensitized Solar Cells. Journal of the American Chemical Society, 2013, 135, 7378-7385.	13.7	138
15	lodine-free redox couples for dye-sensitized solar cells. Journal of Materials Chemistry, 2011, 21, 10592.	6.7	137
16	Influence of Triple Bonds as π-Spacer Units in Metal-Free Organic Dyes for Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2010, 114, 11305-11313.	3.1	134
17	Effect of different electron donating groups on the performance of dye-sensitized solar cells. Dyes and Pigments, 2010, 84, 62-68.	3.7	132
18	A Triphenylamine Dye Model for the Study of Intramolecular Energy Transfer and Charge Transfer in Dye‧ensitized Solar Cells. Advanced Functional Materials, 2008, 18, 3461-3468.	14.9	131

HAINING TIAN

#	Article	IF	CITATIONS
19	Efficient near infrared D–ï€â€"A sensitizers with lateral anchoring group for dye-sensitized solar cells. Chemical Communications, 2009, , 4031.	4.1	112
20	Efficient Organicâ€Ðye‣ensitized Solar Cells Based on an Iodineâ€Free Electrolyte. Angewandte Chemie - International Edition, 2010, 49, 7328-7331.	13.8	112
21	Convergent/Divergent Synthesis of a Linkerâ€Varied Series of Dyes for Dye‣ensitized Solar Cells Based on the D35 Donor. Advanced Energy Materials, 2013, 3, 1647-1656.	19.5	103
22	Use of colloidal upconversion nanocrystals for energy relay solar cell light harvesting in the near-infrared region. Journal of Materials Chemistry, 2012, 22, 16709.	6.7	101
23	From NiMoO ₄ to γ-NiOOH: Detecting the Active Catalyst Phase by Time Resolved <i>in Situ</i> and <i>Operando</i> Raman Spectroscopy. ACS Nano, 2021, 15, 13504-13515.	14.6	93
24	High conductivity Ag-based metal organic complexes as dopant-free hole-transport materials for perovskite solar cells with high fill factors. Chemical Science, 2016, 7, 2633-2638.	7.4	89
25	Panchromatic Ternary Polymer Dots Involving Sub-Picosecond Energy and Charge Transfer for Efficient and Stable Photocatalytic Hydrogen Evolution. Journal of the American Chemical Society, 2021, 143, 2875-2885.	13.7	87
26	Modifying organic phenoxazine dyes for efficient dye-sensitized solar cells. Journal of Materials Chemistry, 2011, 21, 12462.	6.7	79
27	Photoinduced intramolecular charge-transfer state in thiophene-π-conjugated donor–acceptor molecules. Journal of Molecular Structure, 2008, 876, 102-109.	3.6	72
28	Molecular Catalyst Immobilized Photocathodes for Water/Proton and Carbon Dioxide Reduction. ChemSusChem, 2015, 8, 3746-3759.	6.8	72
29	Revisiting the Limiting Factors for Overall Waterâ€6plitting on Organic Photocatalysts. Angewandte Chemie - International Edition, 2020, 59, 16278-16293.	13.8	72
30	Dynamics and Photochemical H ₂ Evolution of Dye–NiO Photocathodes with a Biomimetic FeFe-Catalyst. ACS Energy Letters, 2016, 1, 1106-1111.	17.4	70
31	Solidâ€State Perovskiteâ€Sensitized pâ€Type Mesoporous Nickel Oxide Solar Cells. ChemSusChem, 2014, 7, 2150-2153.	6.8	69
32	Efficient solid state dye-sensitized solar cells based on an oligomer hole transport material and an organic dye. Journal of Materials Chemistry A, 2013, 1, 14467.	10.3	67
33	Insights into the Mechanism of a Covalently Linked Organic Dye–Cobaloxime Catalyst System for Dyeâ€ S ensitized Solar Fuel Devices. ChemSusChem, 2017, 10, 2480-2495.	6.8	65
34	Wave-Function Engineering of CdSe/CdS Core/Shell Quantum Dots for Enhanced Electron Transfer to a TiO ₂ Substrate. Journal of Physical Chemistry C, 2010, 114, 15184-15189.	3.1	60
35	Enhancement of p-Type Dye-Sensitized Solar Cell Performance by Supramolecular Assembly of Electron Donor and Acceptor. Scientific Reports, 2014, 4, 4282.	3.3	59
36	Integrated Design of Organic Hole Transport Materials for Efficient Solid‣tate Dyeâ€Sensitized Solar Cells. Advanced Energy Materials, 2015, 5, 1401185.	19.5	59

HAINING TIAN

#	Article	IF	CITATIONS
37	Chemical and Physical Reduction of High Valence Ni States in Mesoporous NiO Film for Solar Cell Application. ACS Applied Materials & Interfaces, 2017, 9, 33470-33477.	8.0	58
38	Anthraquinone dyes as photosensitizers for dye-sensitized solar cells. Solar Energy Materials and Solar Cells, 2007, 91, 1863-1871.	6.2	57
39	1,1,2,2â€Tetrachloroethane (TeCA) as a Solvent Additive for Organic Hole Transport Materials and Its Application in Highly Efficient Solidâ€State Dyeâ€Sensitized Solar Cells. Advanced Energy Materials, 2015, 5, 1402340.	19.5	57
40	Hollow polymer dots: nature-mimicking architecture for efficient photocatalytic hydrogen evolution reaction. Journal of Materials Chemistry A, 2019, 7, 4797-4803.	10.3	57
41	Development of an organic redox couple and organic dyes for aqueous dye-sensitized solar cells. Energy and Environmental Science, 2012, 5, 9752.	30.8	55
42	A thiolate/disulfide ionic liquid electrolyte for organic dye-sensitized solar cells based on Pt-free counter electrodes. Chemical Communications, 2011, 47, 10124.	4.1	54
43	Organic Polymer Dots as Photocatalysts for Visible Lightâ€Driven Hydrogen Generation. Angewandte Chemie, 2016, 128, 12494-12498.	2.0	49
44	Solid state p-type dye-sensitized solar cells: concept, experiment and mechanism. Physical Chemistry Chemical Physics, 2016, 18, 5080-5085.	2.8	48
45	Carbon Dots and [FeFe] Hydrogenase Biohybrid Assemblies for Efficient Light-Driven Hydrogen Evolution. ACS Catalysis, 2020, 10, 9943-9952.	11.2	46
46	Nanotechnology for catalysis and solar energy conversion. Nanotechnology, 2021, 32, 042003.	2.6	44
47	Type-II colloidal quantum dot sensitized solar cells with a thiourea based organic redox couple. Journal of Materials Chemistry, 2012, 22, 6032.	6.7	41
48	Catalytic systems mimicking the [FeFe]-hydrogenase active site for visible-light-driven hydrogen production. Coordination Chemistry Reviews, 2021, 448, 214172.	18.8	38
49	Covalently linking CuInS ₂ quantum dots with a Re catalyst by click reaction for photocatalytic CO ₂ reduction. Dalton Transactions, 2018, 47, 10775-10783.	3.3	37
50	Solution-processed nanoporous NiO-dye-ZnO photocathodes: Toward efficient and stable solid-state p-type dye-sensitized solar cells and dye-sensitized photoelectrosynthesis cells. Nano Energy, 2019, 55, 59-64.	16.0	36
51	A Doubleâ€Band Tandem Organic Dyeâ€sensitized Solar Cell with an Efficiency of 11.5 %. ChemSusChem, 2011, 4, 609-612.	6.8	33
52	Immobilization of a cobalt catalyst on fullerene in molecular devices for water reduction. Chemical Communications, 2015, 51, 11508-11511.	4.1	32
53	Unravelling in-situ formation of highly active mixed metal oxide CuInO2 nanoparticles during CO2 electroreduction. Nano Energy, 2018, 49, 40-50.	16.0	30
54	Understanding the Role of Surface States on Mesoporous NiO Films. Journal of the American Chemical Society, 2020, 142, 18668-18678.	13.7	30

HAINING TIAN

#	Article	IF	CITATIONS
55	Adsorption geometry, molecular interaction, and charge transfer of triphenylamine-based dye on rutile TiO2(110). Journal of Chemical Physics, 2010, 133, 224704.	3.0	28
56	Towards sustainable and efficient p-type metal oxide semiconductor materials in dye-sensitised photocathodes for solar energy conversion. Physical Chemistry Chemical Physics, 2020, 22, 13850-13861.	2.8	28
57	Dipicolinic acid: a strong anchoring group with tunable redox and spectral behavior for stable dye-sensitized solar cells. Chemical Communications, 2015, 51, 3858-3861.	4.1	26
58	Small Organic Molecule Based on Benzothiadiazole for Electrocatalytic Hydrogen Production. Journal of the American Chemical Society, 2021, 143, 21229-21233.	13.7	25
59	Tetrathiafulvalene as a one-electron iodine-free organic redox mediator in electrolytes for dye-sensitized solar cells. RSC Advances, 2012, 2, 1083-1087.	3.6	24
60	Solid state p-type dye sensitized NiO–dye–TiO ₂ core–shell solar cells. Chemical Communications, 2018, 54, 3739-3742.	4.1	24
61	Aggregation and Electrolyte Composition Effects on the Efficiency of Dye-Sensitized Solar Cells. A Case of a Near-Infrared Absorbing Dye for Tandem Cells. Journal of Physical Chemistry C, 2014, 118, 194-205.	3.1	23
62	Solid-state p-type dye-sensitized solar cells: progress, potential applications and challenges. Sustainable Energy and Fuels, 2019, 3, 888-898.	4.9	22
63	A study of oligothiophene–acceptor dyes in p-type dye-sensitized solar cells. RSC Advances, 2016, 6, 18165-18177.	3.6	21
64	Direct evidence of catalyst reduction on dye and catalyst co-sensitized NiO photocathodes by mid-infrared transient absorption spectroscopy. Chemical Science, 2018, 9, 4983-4991.	7.4	21
65	A heavy metal-free CuInS ₂ quantum dot sensitized NiO photocathode with a Re molecular catalyst for photoelectrochemical CO ₂ reduction. Chemical Communications, 2019, 55, 7918-7921.	4.1	21
66	Ultrafast dye regeneration in a core–shell NiO–dye–TiO ₂ mesoporous film. Physical Chemistry Chemical Physics, 2018, 20, 36-40.	2.8	18
67	Triphenylamine Groups Improve Blocking Behavior of Phenoxazine Dyes in Cobaltâ€Electrolyteâ€Based Dyeâ€Sensitized Solar Cells. ChemPhysChem, 2014, 15, 3476-3483.	2.1	17
68	Pure Organic Redox Couple for Quantumâ€Dotâ€5ensitized Solar Cells. Chemistry - A European Journal, 2011, 17, 6330-6333.	3.3	16
69	Understanding the Performance of NiO Photocathodes with Alkyl-Derivatized Cobalt Catalysts and a Push–Pull Dye. ACS Applied Materials & Interfaces, 2020, 12, 31372-31381.	8.0	16
70	Hydrogen evolution by a photoelectrochemical cell based on a Cu2O-ZnO-[FeFe] hydrogenase electrode. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 366, 27-33.	3.9	15
71	Efficient Generation of Hydrogen Peroxide and Formate by an Organic Polymer Dots Photocatalyst in Alkaline Conditions. Angewandte Chemie - International Edition, 2022, 61, .	13.8	15
72	Facile electrochemical synthesis of anatase nano-architectured titanium dioxide films with reversible superhydrophilic behavior. Journal of Industrial and Engineering Chemistry, 2017, 46, 203-211.	5.8	14

Haining Tian

#	Article	IF	CITATIONS
73	An Indacenodithieno[3,2â€b]thiopheneâ€Based Organic Dye for Solidâ€State pâ€Type Dyeâ€Sensitized Solar C ChemSusChem, 2019, 12, 3243-3248.	ells. 6.8	13
74	Using Surface Amide Couplings to Assemble Photocathodes for Solar Fuel Production Applications. ACS Applied Materials & Interfaces, 2020, 12, 4501-4509.	8.0	11
75	Quantum Rodâ€Sensitized Solar Cells. ChemSusChem, 2011, 4, 1741-1744.	6.8	10
76	Revisiting the Limiting Factors for Overall Waterâ€Splitting on Organic Photocatalysts. Angewandte Chemie, 2020, 132, 16418-16433.	2.0	9
77	Ultrafast Dynamics in Cu-Deficient CuInS ₂ Quantum Dots: Sub-Bandgap Transitions and Self-Assembled Molecular Catalysts. Journal of Physical Chemistry C, 2021, 125, 14751-14764.	3.1	9
78	EFFECT OF THE CHROMOPHORES STRUCTURES ON THE PERFORMANCE OF SOLID-STATE DYE SENSITIZED SOLAR CELLS. Nano, 2014, 09, 1440005.	1.0	7
79	Liquid Dye-Sensitized Solar Cells. Green Chemistry and Sustainable Technology, 2018, , 109-149.	0.7	5
80	Efficient Generation of Hydrogen Peroxide and Formate by an Organic Polymer Dots Photocatalyst in Alkaline Conditions. Angewandte Chemie, 2022, 134, .	2.0	5
81	Hydroxyl-Decorated Diiron Complex as a [FeFe]-Hydrogenase Active Site Model Complex: Light-Driven Photocatalytic Activity and Heterogenization on Ethylene-Bridged Periodic Mesoporous Organosilica. Catalysts, 2022, 12, 254.	3.5	4
82	Mechanistic Insights into Solid-State p-Type Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2019, 123, 26151-26160.	3.1	3
83	In Situ Preparation and Immobilization of Semiconducting Polymer Dots on Microbeads for Efficient and Stable Photocatalytic Hydrogen Evolution. ACS Applied Energy Materials, 2021, 4, 4308-4312.	5.1	3
84	Organic Photovoltaics and Dye-Sensitized Solar Cells. , 2013, , 567-605.		2
85	Preparation of polymer nano-photocatalysts by using triton X-100 to improve performance of photocatalytic hydrogen generation. Advanced Materials Letters, 2018, 9, 326-330.	0.6	1
86	Dye-Sensitized Solar Cells: 1,1,2,2-Tetrachloroethane (TeCA) as a Solvent Additive for Organic Hole Transport Materials and Its Application in Highly Efficient Solid-State Dye-Sensitized Solar Cells (Adv.) Tj ETQq0 () 0 19 BT /C)veolock 10 Tf

87	In-situ evaluation of dye adsorption on TiO2using QCM. EPJ Photovoltaics, 2017, 8, 80401.	1.6	0	