Katerina Rohlenova

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/9079287/katerina-rohlenova-publications-by-year.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

27	1,171	17	31
papers	citations	h-index	g-index
31	1,844	11.7	4.14
ext. papers	ext. citations	avg, IF	L-index

#	Paper	IF	Citations
27	Mitochondrial respiration supports autophagy to provide stress resistance during quiescence <i>Autophagy</i> , 2022 , 1-18	10.2	1
26	Protocols for endothelial cell isolation from mouse tissues: small intestine, colon, heart, and liver. <i>STAR Protocols</i> , 2021 , 2, 100489	1.4	2
25	Tumor vessel co-option probed by single-cell analysis. <i>Cell Reports</i> , 2021 , 35, 109253	10.6	8
24	Protocols for endothelial cell isolation from mouse tissues: kidney, spleen, and testis. <i>STAR Protocols</i> , 2021 , 2, 100523	1.4	1
23	Protocols for endothelial cell isolation from mouse tissues: brain, choroid, lung, and muscle. <i>STAR Protocols</i> , 2021 , 2, 100508	1.4	O
22	BIOMEX: an interactive workflow for (single cell) omics data interpretation and visualization. <i>Nucleic Acids Research</i> , 2020 , 48, W385-W394	20.1	22
21	Single-Cell Transcriptome Atlas of Murine Endothelial Cells. <i>Cell</i> , 2020 , 180, 764-779.e20	56.2	281
20	An Integrated Gene Expression Landscape Profiling Approach to Identify Lung Tumor Endothelial Cell Heterogeneity and Angiogenic Candidates. <i>Cancer Cell</i> , 2020 , 37, 21-36.e13	24.3	93
19	Single-Cell RNA Sequencing Maps Endothelial Metabolic Plasticity in Pathological Angiogenesis. <i>Cell Metabolism</i> , 2020 , 31, 862-877.e14	24.6	67
18	Heterogeneous Effects of Calorie Content and Nutritional Components Underlie Dietary Influence on Pancreatic Cancer Susceptibility. <i>Cell Reports</i> , 2020 , 32, 107880	10.6	1
17	Single-Cell RNA Sequencing Reveals Renal Endothelium Heterogeneity and Metabolic Adaptation to Water Deprivation. <i>Journal of the American Society of Nephrology: JASN</i> , 2020 , 31, 118-138	12.7	50
16	Selective elimination of senescent cells by mitochondrial targeting is regulated by ANT2. <i>Cell Death and Differentiation</i> , 2019 , 26, 276-290	12.7	44
15	The metabolic engine of endothelial cells. <i>Nature Metabolism</i> , 2019 , 1, 937-946	14.6	31
14	Reactivation of Dihydroorotate Dehydrogenase-Driven Pyrimidine Biosynthesis Restores Tumor Growth of Respiration-Deficient Cancer Cells. <i>Cell Metabolism</i> , 2019 , 29, 399-416.e10	24.6	104
13	EndoDB: a database of endothelial cell transcriptomics data. <i>Nucleic Acids Research</i> , 2019 , 47, D736-D7	' 44 0.1	42
12	Mitocans: Mitochondrially Targeted Anti-cancer Drugs 2018 , 613-635		4
11	Endothelial Cell Metabolism in Health and Disease. <i>Trends in Cell Biology</i> , 2018 , 28, 224-236	18.3	121

LIST OF PUBLICATIONS

10	Selective Disruption of Respiratory Supercomplexes as a New Strategy to Suppress Her2 Breast Cancer. <i>Antioxidants and Redox Signaling</i> , 2017 , 26, 84-103	8.4	59
9	Antioxidant defense in quiescent cells determines selectivity of electron transport chain inhibition-induced cell death. <i>Free Radical Biology and Medicine</i> , 2017 , 112, 253-266	7.8	16
8	MicroRNA-126 induces autophagy by altering cell metabolism in malignant mesothelioma. <i>Oncotarget</i> , 2016 , 7, 36338-36352	3.3	31
7	The role of Her2 and other oncogenes of the PI3K/AKT pathway in mitochondria. <i>Biological Chemistry</i> , 2016 , 397, 607-15	4.5	20
6	Mitochondrially targeted vitamin E succinate efficiently kills breast tumour-initiating cells in a complex II-dependent manner. <i>BMC Cancer</i> , 2015 , 15, 401	4.8	48
5	Indoleamine-2,3-dioxygenase elevated in tumor-initiating cells is suppressed by mitocans. <i>Free Radical Biology and Medicine</i> , 2014 , 67, 41-50	7.8	18
4	The potential role of CD133 in immune surveillance and apoptosis: a mitochondrial connection?. <i>Antioxidants and Redox Signaling</i> , 2011 , 15, 2989-3002	8.4	7
3	CD133-positive cells are resistant to TRAIL due to up-regulation of FLIP. <i>Biochemical and Biophysical Research Communications</i> , 2008 , 373, 567-71	3.4	48
2	Cancer cells with high expression of CD133 exert FLIP upregulation and resistance to TRAIL-induced apoptosis. <i>BioFactors</i> , 2008 , 34, 231-235	6.1	11
1	Cancer cells with high expression of CD133 exert FLIP upregulation and resistance to TRAIL-induced apoptosis. <i>BioFactors</i> , 2008 , 34, 231-5	6.1	11