Emile Albert Schweikert

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9079270/publications.pdf

Version: 2024-02-01

220 papers

3,058 citations

279487 23 h-index 253896 43 g-index

229 all docs

229 docs citations

times ranked

229

2126 citing authors

#	Article	IF	CITATIONS
1	New Methodology for Accurate Determination of Molecular Co-localization at the Nanoscale. Langmuir, 2022, 38, 5626-5632.	1.6	2
2	Topological Design of Highly Anisotropic Aligned Hole Transporting Molecular Bottlebrushes for Solution-Processed OLEDs. Journal of the American Chemical Society, 2022, 144, 8084-8095.	6.6	10
3	Nanoprojectile Secondary Ion Mass Spectrometry for Nanometrology of Nanoparticles and Their Interfaces. Analytical Chemistry, 2022, 94, 7868-7876.	3 . 2	4
4	Nanoprojectile Secondary Ion Mass Spectrometry for Analysis of Extracellular Vesicles. Analytical Chemistry, 2021, 93, 7481-7490.	3.2	13
5	Nanoparticle-Enabled Multiplexed Electrochemical Immunoassay for Detection of Surface Proteins on Extracellular Vesicles. ACS Applied Materials & Extracellular Vesicles. ACS Applied Materials & Extracellular Vesicles.	4.0	13
6	Enhanced sputter and secondary ion yields using MeV gold nanoparticle beams delivered by the Andromede facility. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2020, 38, 044008.	0.6	2
7	Hypervelocity cluster ion impacts on free standing graphene: Experiment, theory, and applications. Journal of Chemical Physics, 2019, 150, 160901.	1.2	10
8	Label Free Particle-by-Particle Quantification of DNA Loading on Sorted Gold Nanostars. Analytical Chemistry, 2019, 91, 5566-5572.	3.2	16
9	Nanoscale molecular analysis of photoresist films with massive cluster secondary-ion mass spectrometry. Journal of Micro/ Nanolithography, MEMS, and MOEMS, 2019, 18, 1.	1.0	4
10	Understanding photoacid generator distribution at the nanoscale using massive cluster secondary ion mass spectrometry. Journal of Micro/ Nanolithography, MEMS, and MOEMS, 2019, 18, 1.	1.0	5
11	Understanding the photoacid generator distribution at nanoscale using massive cluster secondary ion mass spectrometry., 2019,,.		1
12	Nano-scale molecular analysis of photo-resist films with massive cluster secondary ion mass spectrometry. , 2019, , .		0
13	10.1063/1.5080606.1., 2019, , .		0
14	10.1063/1.5080606.4., 2019, , .		0
15	"Trampoline―ejection of organic molecules from graphene and graphite via keV cluster ions impacts. Journal of Chemical Physics, 2018, 148, 144309.	1.2	5
16	Fluoropolymer-diluted small molecule organic semiconductors with extreme thermal stability. Applied Physics Letters, 2018, 113, .	1.5	13
17	Molecular Colocalization Using Massive Gold Cluster Secondary Ion Mass Spectrometry. Analytical Chemistry, 2018, 90, 12692-12697.	3.2	11
18	The influence of surface chemistry on the kinetics and thermodynamics of bacterial adhesion. Scientific Reports, 2018, 8, 17247.	1.6	124

#	Article	IF	CITATIONS
19	2D AlB2 flakes for epitaxial thin film growth. Journal of Materials Research, 2018, 33, 2318-2326.	1.2	6
20	The collision of a hypervelocity massive projectile with free-standing graphene: Investigation of secondary ion emission and projectile fragmentation. Journal of Chemical Physics, 2017, 146, 054305.	1.2	11
21	Ejection-ionization of molecules from free standing graphene. Journal of Chemical Physics, 2017, 146, 084308.	1.2	8
22	Characterization of nanometric inclusions via nanoprojectile impacts. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2016, 34, .	0.6	3
23	Characterization of individual free-standing nano-objects by cluster SIMS in transmission. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2016, 34, 03H117.	0.6	5
24	SIMS of transfer ribonucleic acid molecules encapsulated between free-standing graphene sheets. Biointerphases, 2016, 11, 02A324.	0.6	1
25	Testing Molecular Homogeneity at the Nanoscale with Massive Cluster Secondary Ion Mass Spectrometry. Analytical Chemistry, 2016, 88, 7639-7646.	3.2	17
26	Advanced photoresist technologies by intricate molecular brush architectures: Diblock brush terpolymerâ€based positiveâ€ŧone photoresist materials. Journal of Polymer Science Part A, 2015, 53, 193-199.	2.5	12
27	Single impacts of keV fullerene ions on free standing graphene: Emission of ions and electrons from confined volume. Journal of Chemical Physics, 2015, 143, 164302.	1.2	17
28	Nanodomain analysis with clusterâ€SIMS: application to the characterization of macromolecular brush architecture. Surface and Interface Analysis, 2015, 47, 1051-1055.	0.8	2
29	Mass Spectrometry of Nanoparticles is Different. Journal of the American Society for Mass Spectrometry, 2015, 26, 1259-1265.	1.2	10
30	Hypervelocity nanoparticle impacts on free-standing graphene: A sui generis mode of sputtering. Journal of Chemical Physics, 2015, 142, 044308.	1.2	17
31	Directing Selfâ€Assembly of Nanoscopic Cylindrical Diblock Brush Terpolymers into Films with Desired Spatial Orientations: Expansion of Chemical Composition Scope. Macromolecular Rapid Communications, 2014, 35, 437-441.	2.0	20
32	SIMS methodology for probing the fate and dispersion of catalytically active molecules. International Journal of Mass Spectrometry, 2014, 370, 107-113.	0.7	5
33	Preventing adhesion of Escherichia coli O157:H7 and Salmonella Typhimurium LT2 on tomato surfaces via ultrathin polyethylene glycol film. International Journal of Food Microbiology, 2014, 185, 73-81.	2.1	25
34	Surface characterization of biological nanodomains using NPâ€ToFâ€SIMS. Surface and Interface Analysis, 2013, 45, 294-297.	0.8	4
35	Simultaneous detection and localization of secondary ions and electrons from single large cluster impacts. Surface and Interface Analysis, 2013, 45, 529-531.	0.8	1
36	Characteristics of positive and negative secondary ions emitted from Au ₃ ⁺ and Au ₄₀₀ ⁺⁴ impacts. Surface and Interface Analysis, 2013, 45, 134-137.	0.8	10

#	Article	lF	CITATIONS
37	Characterization of individual nano-objects with nanoprojectile-SIMS. Surface and Interface Analysis, 2013, 45, 329-332.	0.8	3
38	Metal-assisted SIMS with hypervelocity gold cluster projectiles. International Journal of Mass Spectrometry, 2013, 343-344, 28-36.	0.7	11
39	Size-dependent emission of negative ions from gold nanoparticles bombarded with C60 and Au400. International Journal of Mass Spectrometry, 2013, 334, 43-48.	0.7	18
40	Nanoscopic Cylindrical Dual Concentric and Lengthwise Block Brush Terpolymers as Covalent Preassembled High-Resolution and High-Sensitivity Negative-Tone Photoresist Materials. Journal of the American Chemical Society, 2013, 135, 4203-4206.	6.6	104
41	Measuring the internal energies of species emitted from hypervelocity nanoprojectile impacts on surfaces using recalibrated benzylpyridinium probe ions. Journal of Chemical Physics, 2013, 138, 214301.	1.2	17
42	Bottom-up/top-down high resolution, high throughput lithography using vertically assembled block bottle brush polymers., 2013,,.		0
43	Bottom-up/top-down, high-resolution, high-throughput lithography using vertically assembled block bottle brush polymers. Journal of Micro/ Nanolithography, MEMS, and MOEMS, 2013, 12, 043006.	1.0	10
44	Bidirectional Ion Emission from Massive Gold Cluster Impacts on Nanometric Carbon Foils. Journal of Physical Chemistry C, 2012, 116, 8138-8144.	1.5	9
45	Noradrenaline-Functionalized Hyperbranched Fluoropolymer–Poly(ethylene glycol) Cross-Linked Networks As Dual-Mode, Anti-Biofouling Coatings. ACS Nano, 2012, 6, 1503-1512.	7.3	52
46	Analysis of Fluorescent Proteins with a Nanoparticle Probe. Journal of Physical Chemistry Letters, 2012, 3, 337-341.	2.1	1
47	Targeted surface nanocomplexity: two-dimensional control over the composition, physical properties and anti-biofouling performance of hyperbranched fluoropolymer–poly(ethylene glycol) amphiphilic crosslinked networks. Polymer Chemistry, 2012, 3, 3121.	1.9	36
48	On the surface mapping using individual cluster impacts. Nuclear Instruments & Methods in Physics Research B, 2012, 273, 270-273.	0.6	7
49	Electrochemical release of hepatocyte-on-hydrogel microstructures from ITO substrates. Analytical and Bioanalytical Chemistry, 2012, 402, 1847-1856.	1.9	11
50	Analysis of Native Biological Surfaces Using a 100 kV Massive Gold Cluster Source. Analytical Chemistry, 2011, 83, 8448-8453.	3.2	27
51	Quantitative Label-Free Characterization of Avidin–Biotin Assemblies on Silanized Glass. Analytical Chemistry, 2011, 83, 7173-7178.	3.2	15
52	Probing chemical homogeneity within single cluster impact sites. Surface and Interface Analysis, 2011, 43, 551-554.	0.8	2
53	Characterization and quantification of biological micropatterns using cluster SIMS. Surface and Interface Analysis, 2011, 43, 555-558.	0.8	11
54	Realâ€time localization of single C ₆₀ impacts with correlated secondary ion detection. Surface and Interface Analysis, 2011, 43, 484-487.	0.8	7

#	Article	IF	CITATIONS
55	Massive clusters: Secondary emission from qkeV to qMeV. New emission processes? New SIMS probe?. Surface and Interface Analysis, 2011, 43, 62-65.	0.8	12
56	The Pegase project, a new solid surface probe: focused massive cluster ion beams. Surface and Interface Analysis, 2011, 43, 66-69.	0.8	21
57	Examination of individual nanoparticles with cluster SIMS. Surface and Interface Analysis, 2011, 43, 547-550.	0.8	3
58	Statistics of electron and ion emission from single massive cluster impacts. Surface and Interface Analysis, 2011, 43, 49-52.	0.8	3
59	Photon emission from massive projectile impacts on solids. Surface and Interface Analysis, 2011, 43, 53-57.	0.8	6
60	The use of glass substrates with bi-functional silanes for designing micropatterned cell-secreted cytokine immunoassays. Biomaterials, 2011, 32, 5478-5488.	5.7	24
61	Characterization and quantification of nanoparticle–antibody conjugates on cells using C60 ToF SIMS in the event-by-event bombardment/detection mode. International Journal of Mass Spectrometry, 2011, 303, 97-102.	0.7	25
62	Single Impacts of C ₆₀ on Solids: Emission of Electrons, Ions and Prospects for Surface Mapping. Journal of Physical Chemistry C, 2010, 114, 5637-5644.	1.5	27
63	Photon, Electron, and Secondary Ion Emission from Single C ₆₀ keV Impacts. Journal of Physical Chemistry Letters, 2010, 1, 3510-3513.	2.1	8
64	Electron Emission from Hypervelocity C ₆₀ Impacts. Journal of Physical Chemistry C, 2010, 114, 17191-17196.	1.5	8
65	Characterization of Individual Ag Nanoparticles and Their Chemical Environment. Analytical Chemistry, 2009, 81, 1089-1094.	3.2	20
66	Molecular Identification of Individual Nano-Objects. Analytical Chemistry, 2009, 81, 7527-7531.	3.2	13
67	Micropatterning of Proteins and Mammalian Cells on Indium Tin Oxide. ACS Applied Materials & Samp; Interfaces, 2009, 1, 2592-2601.	4.0	52
68	Emission of molecular fragments synthesized in hypervelocity nanoparticle impacts. International Journal of Mass Spectrometry, 2008, 275, 86-90.	0.7	11
69	Exercising Spatiotemporal Control of Cell Attachment with Optically Transparent Microelectrodes. Langmuir, 2008, 24, 6837-6844.	1.6	40
70	Secondary ion mass spectrometry with C60+ and Au4004+ projectiles: Depth and nature of secondary ion emission from multilayer assemblies. International Journal of Mass Spectrometry, 2008, 269, 112-117.	0.7	22
71	Characterization of Individual Nano-Objects by Secondary Ion Mass Spectrometry. Analytical Chemistry, 2008, 80, 9052-9057.	3.2	21
72	Examination of Nanoparticles via Single Large Cluster Impacts. Nano Letters, 2008, 8, 1076-1080.	4.5	17

#	Article	IF	Citations
7 3	Prompt in situ emission of gold adducts from single impacts of large gold clusters on organics solids. International Journal of Mass Spectrometry, 2007, 263, 298-303.	0.7	14
74	Nanovolume Analysis with Secondary Ion Mass Spectrometry Using Massive Projectiles. Analytical Chemistry, 2006, 78, 7410-7416.	3.2	22
7 5	Influence of massive projectile size and energy on secondary ion yields from organic surfaces. Applied Surface Science, 2006, 252, 6529-6532.	3.1	17
76	Organic SIMS with single massive gold projectile: Ion yield enhancement by silver metallization. Applied Surface Science, 2006, 252, 6644-6647.	3.1	6
77	Molecular ion emission from single large cluster impacts. Applied Surface Science, 2006, 252, 6490-6493.	3.1	17
78	Matrix-enhanced cluster-SIMS. Applied Surface Science, 2006, 252, 6624-6627.	3.1	21
79	Au-analyte adducts resulting from single massive gold cluster impacts. Applied Surface Science, 2006, 252, 6558-6561.	3.1	10
80	Multiple secondary ion emission from keV massive gold projectile impacts. International Journal of Mass Spectrometry, 2005, 241, 57-61.	0.7	17
81	Multi-ion emission from large and massive keV cluster impacts. International Journal of Mass Spectrometry, 2005, 245, 48-52.	0.7	20
82	Coincidental emission of molecular ions from keV carbon cluster impacts. International Journal of Mass Spectrometry, 2004, 238, 59-64.	0.7	9
83	Cluster secondary ion mass spectrometry: an insight into "super-efficient―collision cascades. Applied Surface Science, 2004, 231-232, 54-58.	3.1	13
84	Layer-by-layer characterization of ultrathin films with secondary ion mass spectrometry. Applied Surface Science, 2004, 231-232, 328-331.	3.1	8
85	Nanodomain analysis via coincidence ion mass spectrometry. Applied Surface Science, 2004, 231-232, 113-116.	3.1	5
86	Characterization of surface structure by cluster coincidental ion mass spectrometry. Applied Surface Science, 2004, 231-232, 106-112.	3.1	9
87	Surface Mass Spectrometry at the Submicrometer Scale. Langmuir, 2002, 18, 8836-8840.	1.6	14
88	A novel approach for coincidence ion mass spectrometry. Analytical and Bioanalytical Chemistry, 2002, 373, 609-611.	1.9	4
89	Effectiveness of atomic and polyatomic primary ions for organic secondary ion mass spectrometry. International Journal of Mass Spectrometry, 2001, 207, 111-122.	0.7	28
90	Secondary ion yield improvements for phosphated and sulfated molecules using substrate-enhanced time-of-flight secondary ion mass spectrometry. International Journal of Mass Spectrometry, 2001, 209, 113-124.	0.7	4

#	Article	IF	CITATIONS
91	Influence of constituent mass on secondary ion yield enhancements from polyatomic ion impacts on aminoethanethiol self-assembled monolayer surfaces. Rapid Communications in Mass Spectrometry, 2001, 15, 370-372.	0.7	4
92	Characterization of Photooxidized Self-Assembled Monolayers and Bilayers by Spontaneous Desorption Mass Spectrometry. Analytical Chemistry, 2000, 72, 5973-5980.	3.2	14
93	Secondary cluster ion emission from megaelectron volts ion impacts on NaBF4. 1. Ion decay fractions and dissociation pathways. International Journal of Mass Spectrometry, 2000, 202, 111-119.	0.7	4
94	Determination of the metastable dissociation pathways for chromium/oxygen cluster ions sputtered from potassium chromate and dichromate using the ion-neutral correlation method. International Journal of Mass Spectrometry, 2000, 203, 59-69.	0.7	8
95	Secondary ion emission from keV energy atomic and polyatomic projectile impacts on sodium iodate. International Journal of Mass Spectrometry, 2000, 197, 149-161.	0.7	13
96	SIMS of Organic Anions Adsorbed onto an Aminoethanethiol Self-Assembled Monolayer:Â An Approach for Enhanced Secondary Ion Emission. Analytical Chemistry, 2000, 72, 2618-2626.	3.2	13
97	Speciation of Sodium Nitrate and Sodium Nitrite Using Kiloelectronvolt Energy Atomic and Polyatomic and Megaelectronvolt Energy Atomic Projectiles with Secondary Ion Mass Spectrometry. Analytical Chemistry, 2000, 72, 2468-2474.	3. 2	7
98	Carbon-cluster formation from polymers caused by MeV-ion impacts and keV-cluster-ion impacts. Physical Review A, 1999, 59, 4470-4474.	1.0	10
99	Secondary ion yields produced by keV atomic and polyatomic ion impacts on a self-assembled monolayer surface., 1999, 13, 1374-1380.		26
100	Negative secondary ion emission from NaBF4: comparison of atomic and polyatomic projectiles at different impact energies. Journal of Mass Spectrometry, 1999, 34, 554-562.	0.7	16
101	Calcium Phosphate Phase Identification Using XPS and Time-of-Flight Cluster SIMS. Analytical Chemistry, 1999, 71, 149-153.	3.2	191
102	Solidâ^'Liquid Adsorption of Calcium Phosphate on TiO2. Langmuir, 1999, 15, 7355-7360.	1.6	45
103	Sputtering of Tetrafluoro- and Tetraphenylborate Anions Adsorbed to an Amine-Terminated Self-Assembled Monolayer Surface. Journal of Physical Chemistry B, 1999, 103, 7929-7934.	1.2	8
104	Sublinear effect in light emission from cesium iodide bombarded by keV polyatomic projectiles. Nuclear Instruments & Methods in Physics Research B, 1998, 134, 352-359.	0.6	6
105	Recoiled ions from polyatomic cluster impacts on organic and inorganic targets. Nuclear Instruments & Methods in Physics Research B, 1998, 142, 606-611.	0.6	5
106	Probing silicon substitution in molecular sieves by plasma desorption mass spectrometry. Journal of Molecular Structure, 1998, 470, 183-190.	1.8	0
107	Kiloelectron volt cluster impacts: prospects for cluster-SIMS. International Journal of Mass Spectrometry and Ion Processes, 1998, 174, 167-177.	1.9	48
108	Multiplicity analysis: a study of secondary particle distribution and correlation. Surface Science, 1998, 408, 28-42.	0.8	12

#	Article	lF	CITATIONS
109	An old-new tool for nuclear analysis: Time-of-Flight spectrometry. Journal of Radioanalytical and Nuclear Chemistry, 1997, 215, 23-30.	0.7	5
110	Matrix Effects on the Fragmentation of Vitamin B12 in Plasma Desorption Mass Spectrometry. Rapid Communications in Mass Spectrometry, 1997, 11, 143-147.	0.7	13
111	Time-of-flight-secondary ion mass spectrometry of NaBF4: a comparison of atomic and polyatomic primary ions at constant impact energy. Rapid Communications in Mass Spectrometry, 1997, 11, 1794-1798.	0.7	20
112	A plasma desorption mass spectrometry study of cluster ion formation from group IIA nitrates. Nuclear Instruments & Methods in Physics Research B, 1996, 112, 55-58.	0.6	3
113	The use of coincidence counting mass spectrometry to study the emission and metastable dissociation of cluster ions. Nuclear Instruments & Methods in Physics Research B, 1996, 112, 68-71.	0.6	5
114	Time-correlated luminescence from MeV projectile impacts. Nuclear Instruments & Methods in Physics Research B, 1996, 119, 583-586.	0.6	0
115	Secondary cluster ion distributions produced by MeV ion impacts on Group IIA oxides and nitrates. International Journal of Mass Spectrometry and Ion Processes, 1996, 155, 89-97.	1.9	5
116	Plasma desorption mass spectrometry of small straight-chain and cyclic alkenes. Journal of Mass Spectrometry, 1995, 30, 305-311.	0.7	2
117	A mass spectrometric method for probing surface structure. Vacuum, 1995, 46, 1227-1230.	1.6	4
118	A preliminary screening technique for selected metals at waste sites. Journal of Radioanalytical and Nuclear Chemistry, 1995, 192, 275-280.	0.7	7
119	Secondary ion correlations in plasma desorption mass spectrometry as a function of fission fragment energy. Nuclear Instruments & Methods in Physics Research B, 1995, 96, 536-540.	0.6	2
120	High energy chemistry caused by fast ion-solid interactions. Nuclear Instruments & Methods in Physics Research B, 1995, 96, 530-535.	0.6	13
121	Luminescence of self-trapped excitons induced by single keV ion bombardment. Nuclear Instruments & Methods in Physics Research B, 1995, 100, 383-388.	0.6	3
122	Solid-state luminescence: Probe for ion-solid interactions. Physical Review B, 1995, 51, 7373-7376.	1.1	9
123	Fragment ion formation fromn-alkanes and cycloalkanes by plasma desorption. Organic Mass Spectrometry, 1994, 29, 679-683.	1.3	5
124	Coincidence counting analysis of secondary ions emitted from a phenylalanine target under multicharged MeV carbon bombardment. International Journal of Mass Spectrometry and Ion Processes, 1994, 136, 107-117.	1.9	3
125	New approaches for neutron depth profiling. Journal of Radioanalytical and Nuclear Chemistry, 1994, 180, 255-262.	0.7	4
126	Surface structure investigations using plasma desorption mass spectrometry and coincidence counting. International Journal of Mass Spectrometry and Ion Processes, 1993, 128, 133-141.	1.9	16

#	Article	IF	CITATIONS
127	Interaction of atomic and molecular MeV ions with surface. Nuclear Instruments & Methods in Physics Research B, 1993, 79, 215-218.	0.6	2
128	Exit conditions for secondary ion emission induced by keV cluster bombardment. Nuclear Instruments & Methods in Physics Research B, 1993, 82, 317-322.	0.6	9
129	Studies in neutron depth profiling. Journal of Radioanalytical and Nuclear Chemistry, 1993, 167, 111-119.	0.7	3
130	Primary ion production from various gases in spontaneous desorption. International Journal of Mass Spectrometry and Ion Processes, 1993, 128, 107-113.	1.9	3
131	A coincidence counting study of spontaneous desorption. International Journal of Mass Spectrometry and Ion Processes, 1993, 127, 1-9.	1.9	2
132	Diffusion of lithium-6 isotopes in lithium aluminate ceramics using neutron depth profiling. Journal of Nuclear Materials, 1993, 203, 43-49.	1.3	6
133	A spontaneous desorptionâ€based polyatomic ion source. Review of Scientific Instruments, 1993, 64, 1748-1753.	0.6	7
134	Coincidence counting for the study of hydrocarbon ion desorption in plasma desorption mass spectrometry. Journal of Chemical Physics, 1992, 96, 3206-3210.	1.2	12
135	A coincidence counting study of polyatomic ion induced sputtering. Journal of Chemical Physics, 1992, 96, 8171-8176.	1.2	10
136	Analysis of polystyrene/PVME blends by coincidence counting time-of-flight mass spectrometry. Analytical Chemistry, 1992, 64, 843-847.	3.2	18
137	A brief review of the determination of cadmium by prompt gamma-ray neutron activation analysis. Journal of Radioanalytical and Nuclear Chemistry, 1991, 152, 497-506.	0.7	7
138	Impact of slow gold clusters on various solids: nonlinear effects in secondary ion emission. Nuclear Instruments & Methods in Physics Research B, 1991, 62, 8-22.	0.6	174
139	Surface analysis with keV polyatomic projectiles. Nuclear Instruments & Methods in Physics Research B, 1991, 56-57, 361-364.	0.6	6
140	Plasma desorption mass spectrometry with coincidence counting for the analysis of polymer surfaces. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1991, 9, 1300-1306.	0.9	6
141	Surface characterization with keV clusters and MeV ions. Nuclear Instruments & Methods in Physics Research B, 1990, 50, 307-313.	0.6	22
142	Cf-252 particle desorption mass spectrometry of photo-oxidized polystyrene. Surface and Interface Analysis, 1990, 15, 503-508.	0.8	5
143	Surface characterization of chemically modified chrysotile asbestos by particle-induced desorption mass spectrometry. Surface and Interface Analysis, 1990, 15, 651-658.	0.8	4
144	Spontaneous desorption: field assisted ion induced desorption mass spectrometry. International Journal of Mass Spectrometry and Ion Processes, 1990, 97, 311-324.	1.9	8

#	Article	IF	Citations
145	Coincidence Counting in Time-of-Flight Mass Spectrometry: A Test for Chemical Microhomogeneity. Science, 1990, 248, 988-990.	6.0	57
146	A new experimental method for determining secondary ion yields from surfaces bombarded by complex heterogeneous ions. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1990, 8, 2265-2268.	0.9	16
147	Secondary-ion yields from surfaces bombarded with keV molecular and cluster ions. Physical Review Letters, 1989, 63, 1625-1628.	2.9	121
148	Multicomponent dye detection with californium-252 particle-desorption mass spectrometry. Analytica Chimica Acta, 1989, 218, 85-92.	2.6	2
149	Particle desorption mass spectrometry of Yî—Baî—Cuî—O superconductors. International Journal of Mass Spectrometry and Ion Processes, 1989, 91, R5-R11.	1.9	8
150	Advances in nuclear analysis methods. Analyst, The, 1989, 114, 269.	1.7	4
151	HYDROGEN IONS EMISSION UNDER FAST CHARGED PARTICLES : THE BEGINNING OF THE DESORPTION PROCESS. Journal De Physique Colloque, 1989, 50, C2-79-C2-84.	0.2	4
152	CLUSTERS AS PROJECTILES FOR SIMS. Journal De Physique Colloque, 1989, 50, C2-85-C2-92.	0.2	2
153	DESORPTION YIELDS USING keV POLYATOMIC PROJECTILES. Journal De Physique Colloque, 1989, 50, C2-147-C2-153.	0.2	1
154	Design and performance evaluation of a miniaturized particle desorption mass spectrometer. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1988, 273, 203-210.	0.7	6
155	X-ray photoelectron spectroscopy and Rutherford backscattering spectrometry study of anion incorporation in anodically grown films. Thin Solid Films, 1988, 167, 245-254.	0.8	5
156	A comparison of SIMS and PDMS: Analyses of mixed metal oxides. Materials Chemistry and Physics, 1988, 20, 485-499.	2.0	2
157	252Cf-particle desorption mass spectrometry in a depth profiling mode. Nuclear Instruments & Methods in Physics Research B, 1988, 34, 89-96.	0.6	8
158	Methodology and application of the nuclear resonance reaction $16O(\hat{l}\pm,\hat{l}\pm)16O$ for the profiling of titanium oxide. Nuclear Instruments & Methods in Physics Research B, 1988, 35, 159-166.	0.6	34
159	Surface characterization of a National Bureau of Standards glass reference material by californium-252 particle desorption mass spectrometry. Analytical Chemistry, 1988, 60, 1944-1947.	3.2	3
160	Fingerprinting of polymer surfaces with Cfâ€252 particle desorption mass spectrometry. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1988, 6, 946-949.	0.9	10
161	On the origin of hydrogen clusters produced by particle induced desorption. Journal of Chemical Physics, 1988, 89, 6708-6712.	1.2	14
162	Micro and surface analysis with fast heavy ions. Analytica Chimica Acta, 1987, 195, 163-172.	2.6	7

#	Article	IF	CITATIONS
163	Recent developments in chemical characterization with MeV ion beams. Journal of Radioanalytical and Nuclear Chemistry, 1987, 110, 451-460.	0.7	2
164	Studies in heavy ion activation analysis trace determination possibilities with 9Be bombardment. Journal of Radioanalytical and Nuclear Chemistry, 1987, 116, 401-408.	0.7	1
165	Trace determination of lead by helium-4 activation analysis. Journal of Radioanalytical and Nuclear Chemistry, 1987, 119, 81-86.	0.7	4
166	Compact timeâ€ofâ€flight mass spectrometer using particleâ€induced desorption. Review of Scientific Instruments, 1986, 57, 692-694.	0.6	23
167	Application of particle desorption mass spectrometry to the characterization of minerals. Analytical Chemistry, 1986, 58, 2126-2129.	3.2	3
168	Particle induced desorption mass spectrometry in a microscopic mode. Analytical Chemistry, 1986, 58, 1686-1690.	3.2	5
169	Trace determination of rhodium using proton activation followed by X-ray counting. Journal of Radioanalytical and Nuclear Chemistry, 1986, 100, 197-201.	0.7	2
170	Ion-induced desorption in insulators by Hydrogen cluster impact up to 600 KeV. Radiation Effects, 1986, 99, 213-226.	0.4	5
171	On the determination of phosphorus via charged particle activation analysis. Journal of Radioanalytical and Nuclear Chemistry, 1985, 91, 173-178.	0.7	8
172	Studies in heavy ion activation analysis. Journal of Radioanalytical and Nuclear Chemistry, 1985, 88, 369-377.	0.7	4
173	Characterization of tantalum pentoxide films with backscattering spectrometry. Journal of Radioanalytical and Nuclear Chemistry, 1985, 90, 325-332.	0.7	0
174	Studies in heavy ion activation analysis. Journal of Radioanalytical and Nuclear Chemistry, 1985, 90, 341-348.	0.7	6
175	Studies in heavy ion activation analysis. Journal of Radioanalytical and Nuclear Chemistry, 1985, 90, 349-354.	0.7	1
176	Desorption mass spectrometry using cluster ions. Nuclear Instruments & Methods in Physics Research B, 1985, 10-11, 751-753.	0.6	0
177	On the determination of carbon and oxygen impurities in silicon by 3He activation analysis. Journal of Radioanalytical and Nuclear Chemistry, 1984, 81, 125-129.	0.7	10
178	The unusual structure of tungsten-doped electrochemically-grown alumina films detected by MeV ion scattering. Journal of the Chemical Society Chemical Communications, 1984, , 1560.	2.0	3
179	Rutherford backscattering with heavy ions. Journal of Radioanalytical Chemistry, 1983, 78, 181-187.	0.5	0
180	Radioactive implant induced X-ray emission: Part II. Nuclear Instruments & Methods in Physics Research, 1983, 216, 497-500.	0.9	1

#	Article	IF	Citations
181	Spatially resolved heavy ion induced desorption mass spectrometry. International Journal of Mass Spectrometry and Ion Physics, 1983, 53, 331-334.	1.3	5
182	Radioactive implant induced X-ray emission. Nuclear Instruments & Methods in Physics Research, 1982, 193, 21-25.	0.9	6
183	Activation Analysis with 1 MeV/amu Heavy Ion Beams. IEEE Transactions on Nuclear Science, $1981, 28, 1672-1674$.	1.2	1
184	Rutherford Backscattering with Heavy Ions. IEEE Transactions on Nuclear Science, 1981, 28, 1831-1833.	1.2	4
185	Advances in accelerator based analysis techniques. Journal of Radioanalytical Chemistry, 1981, 64, 195-212.	0.5	8
186	Radioactive ion microscopy. Die Naturwissenschaften, 1980, 67, 254-255.	0.6	1
187	Studies in heavy ion activation analysis. Journal of Radioanalytical Chemistry, 1980, 60, 255-260.	0.5	6
188	Studies in heavy ion activation analysis. Journal of Radioanalytical Chemistry, 1980, 60, 261-265.	0.5	3
189	Possibilities of using simultaneous ion-induced nuclear and atomic activation for the characterization of hair. Journal of Radioanalytical Chemistry, 1980, 57, 113-120.	0.5	1
190	Neutron activation analysis of flints from the edwards formation. Journal of Radioanalytical Chemistry, 1979, 52, 101-110.	0.5	6
191	Microanalysis of $\hat{a}\in \infty$ biometallic $\hat{a}\in \infty$ -compounds using nuclear and atomic activation. Journal of Radioanalytical Chemistry, 1979, 52, 117-126.	0.5	4
192	Heavy ion induced K, L and M X-rays and their use in trace element analysis. Journal of Radioanalytical Chemistry, 1979, 54, 191-203.	0.5	2
193	Studies in heavy ion activation analysis. Journal of Radioanalytical Chemistry, 1979, 54, 281-288.	0.5	6
194	Studies in heavy ion activation analysis I. on the selection of activation reactions. Journal of Radioanalytical Chemistry, 1979, 53, 173-180.	0.5	11
195	Nuclear and atomic activation with heavy ion beams. Journal of Radioanalytical Chemistry, 1978, 43, 559-573.	0.5	11
196	High energy heavy-ion induced X-ray emission analysis. Nuclear Instruments & Methods, 1977, 142, 111-119.	1.2	14
197	Comparison of nondestructive proton and neutron activation: The case of biological samples. Journal of Radioanalytical Chemistry, 1977, 37, 571-580.	0.5	24
198	Hydrogen and deuterium analysis by heavy ion activation. Journal of Radioanalytical Chemistry, 1977, 37, 275-283.	0.5	23

#	Article	IF	Citations
199	Activation analysis opportunities using a $5\hat{A}\cdot1012$ to $5\hat{A}\cdot1013$ n/sec 14 MeV generator. Journal of Radioanalytical Chemistry, 1977, 37, 307-312.	0.5	10
200	Multielement charged particle activation analysis with x-ray counting. Analytical Chemistry, 1976, 48, 429-435.	3.2	19
201	Trace elemental analysis by heavy ion induced x-ray emission. Analytical Chemistry, 1976, 48, 2124-2129.	3.2	17
202	Charged particle activation of medium Z elements. Journal of Radioanalytical Chemistry, 1976, 31, 437-450.	0.5	53
203	Short communications. Talanta, 1975, 22, 84-87.	2.9	1
204	Determination of lithium, boron, and carbon by quasi-prompt charged particle activation analysis. Analytical Chemistry, 1975, 47, 2403-2407.	3.2	26
205	Nondestructive determination of some trace elements in tantalum by proton activation analysis. Analytical Chemistry, 1974, 46, 1626-1629.	3.2	36
206	On the application of charged particle activation analysis to the trace characterization of semiconductor materials. Journal of Radioanalytical Chemistry, 1974, 19, 89-108.	0.5	11
207	Trace determination of zirconium using charged particle activation. Journal of Radioanalytical Chemistry, 1974, 22, 139-145.	0.5	5
208	Determination of iron in glass and cobalt via charged particle activation analysis. Analytical Chemistry, 1974, 46, 655-658.	3.2	10
209	On the determination of sulfur by charged particle activation analysis. Journal of Radioanalytical Chemistry, 1973, 16, 375-383.	0.5	16
210	Charged particle activation analysis coupled with X-ray counting. Journal of Radioanalytical Chemistry, 1973, 16, 385-394.	0.5	13
211	Charged particle activation analysis applied to the detection of heavy elements. Journal of Radioanalytical Chemistry, 1973, 16, 413-419.	0.5	6
212	Determination of zinc and nickel by charged particle activation analysis. Analytical Chemistry, 1973, 45, 2111-2115.	3.2	12
213	Nondestructive charged particle activation analysis using short-lived nuclides. Analytical Chemistry, 1972, 44, 1386-1391.	3.2	24
214	A rapid method for assaying sulfur using proton activation analysis. Nuclear Instruments & Methods, 1972, 99, 461-467.	1.2	13
215	Alpha activation of calcium and its possible use for analysis. Journal of Radioanalytical Chemistry, 1971, 7, 319-327.	0.5	11
216	Determination of oxygen in silicon in the sub-part-per-million range by charged-particle activation analysis. Analytical Chemistry, 1970, 42, 1525-1527.	3.2	21

#	ARTICLE	IF	CITATIONS
217	Ultratrace determination of oxygen and carbon by charged particle activation analysis. Analytical Chemistry, 1969, 41, 958-963.	3.2	36
218	On the possibility of using an electromagnetic radioisotope separator in conjunction with charged-particle and photon-activation analysis. Talanta, 1968, 15, 883-885.	2.9	7
219	Chemical etching procedure used to remove surface oxygen contamination in charged-particle activation analysis. Analytical Chemistry, 1968, 40, 1194-1196.	3.2	20
220	Charged Particle Activation Analysis. , 0, .		1