
Martin Broadley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9079235/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Interaction between sulfur and selenium in agronomic biofortification of cowpea plants under field conditions. Plant and Soil, 2023, 486, 69-85.	1.8	5
2	Multi-elemental Analysis and Health Risk Assessment of Commercial Yerba Mate from Brazil. Biological Trace Element Research, 2022, 200, 1455-1463.	1.9	12
3	Sodium hyperaccumulators in the Caryophyllales are characterized by both abnormally large shoot sodium concentrations and [Na]shoot/[Na]root quotients greater than unity. Annals of Botany, 2022, 129, 65-78.	1.4	0
4	Mineral micronutrient status and spatial distribution among the Ethiopian population. British Journal of Nutrition, 2022, , 1-30.	1.2	1
5	The Impact of Consuming Zinc-Biofortified Wheat Flour on Haematological Indices of Zinc and Iron Status in Adolescent Girls in Rural Pakistan: A Cluster-Randomised, Double-Blind, Controlled Effectiveness Trial. Nutrients, 2022, 14, 1657.	1.7	9
6	Foliar selenium biofortification of broccolini: effects on plant growth and mineral accumulation. Journal of Horticultural Science and Biotechnology, 2022, 97, 730-738.	0.9	4
7	Soil and landscape factors influence geospatial variation in maize grain zinc concentration in Malawi. Scientific Reports, 2022, 12, 7986.	1.6	10
8	Reply to: Evidence confirms an anthropic origin of Amazonian Dark Earths. Nature Communications, 2022, 13, .	5.8	2
9	Limited Supply of Protein and Lysine Is Prevalent among the Poorest Households in Malawi and Exacerbated by Low Protein Quality. Nutrients, 2022, 14, 2430.	1.7	5
10	Spatial analysis of urine zinc (Zn) concentration for women of reproductive age and school age children in Malawi. Environmental Geochemistry and Health, 2021, 43, 259-271.	1.8	4
11	Plant Available Zinc Is Influenced by Landscape Position in the Amhara Region, Ethiopia. Plants, 2021, 10, 254.	1.6	11
12	Can Nitrogen Fertilizer Management Improve Grain Iron Concentration of Agro-Biofortified Crops in Zimbabwe?. Agronomy, 2021, 11, 124.	1.3	5
13	A new hypothesis for the origin of Amazonian Dark Earths. Nature Communications, 2021, 12, 127.	5.8	21
14	Zinc deficiency is highly prevalent and spatially dependent over short distances in Ethiopia. Scientific Reports, 2021, 11, 6510.	1.6	27
15	Magnesium and calcium overaccumulate in the leaves of a <i>schengen3</i> mutant of <i>Brassica rapa</i> . Plant Physiology, 2021, 186, 1616-1631.	2.3	11
16	Global Trends (1961–2017) in Human Dietary Potassium Supplies. Nutrients, 2021, 13, 1369.	1.7	20
17	Communicating uncertainties in spatial predictions of grain micronutrient concentration. Geoscience Communication, 2021, 4, 245-265.	0.5	6
18	Agronomic biofortification of cowpea with zinc: Variation in primary metabolism responses and grain nutritional quality among 29 diverse genotypes. Plant Physiology and Biochemistry, 2021, 162, 378-387.	2.8	19

#	Article	IF	CITATIONS
19	Selenium speciation and bioaccessibility in Se-fertilised crops of dietary importance in Malawi. Journal of Food Composition and Analysis, 2021, 98, 103841.	1.9	15
20	The nutritional quality of cereals varies geospatially in Ethiopia and Malawi. Nature, 2021, 594, 71-76.	13.7	104
21	The effect of soil properties on zinc lability and solubility in soils of Ethiopia – an isotopic dilution study. Soil, 2021, 7, 255-268.	2.2	12
22	Preparing for a community-based agriculture-to-nutrition trial in rural Malawi: formative research to assess feasibility and inform design and implementation decisions. Pilot and Feasibility Studies, 2021, 7, 141.	0.5	4
23	Cood soil management can reduce dietary zinc deficiency in Zimbabwe. CABI Agriculture and Bioscience, 2021, 2, .	1.1	9
24	Application of sodium selenate to cowpea (Vigna unguiculata L.) increases shoot and grain Se partitioning with strong genotypic interactions. Journal of Trace Elements in Medicine and Biology, 2021, 67, 126781.	1.5	3
25	A spatial analysis of lime resources and their potential for improving soil magnesium concentrations and pH in grassland areas of England and Wales. Scientific Reports, 2021, 11, 20420.	1.6	3
26	Biofortified Maize Improves Selenium Status of Women and Children in a Rural Community in Malawi: Results of the Addressing Hidden Hunger With Agronomy Randomized Controlled Trial. Frontiers in Nutrition, 2021, 8, 788096.	1.6	4
27	Biofortified Wheat Increases Dietary Zinc Intake: A Randomised Controlled Efficacy Study of Zincol-2016 in Rural Pakistan. Frontiers in Nutrition, 2021, 8, 809783.	1.6	14
28	Urine selenium concentration is a useful biomarker for assessing population level selenium status. Environment International, 2020, 134, 105218.	4.8	37
29	Quantitative trait loci (QTLs) linked with root growth in lettuce (Lactuca sativa) seedlings. Molecular Breeding, 2020, 40, 1.	1.0	4
30	TRY plant trait database – enhanced coverage and open access. Global Change Biology, 2020, 26, 119-188.	4.2	1,038
31	Agronomic biofortification with selenium impacts storage proteins in grains of upland rice. Journal of the Science of Food and Agriculture, 2020, 100, 1990-1997.	1.7	23
32	Magnesium biofortification of Italian ryegrass (Lolium multiflorum L.) via agronomy and breeding as a potential way to reduce grass tetany in grazing ruminants. Plant and Soil, 2020, 457, 25-41.	1.8	11
33	Site-Specific Factors Influence the Field Performance of a Zn-Biofortified Wheat Variety. Frontiers in Sustainable Food Systems, 2020, 4, .	1.8	33
34	Increasing zinc concentration in maize grown under contrasting soil types in Malawi through agronomic biofortification: Trial protocol for a field experiment to detect small effect sizes. Plant Direct, 2020, 4, e00277.	0.8	9
35	Micronutrient Status and Dietary Diversity of Women of Reproductive Age in Rural Pakistan. Nutrients, 2020, 12, 3407.	1.7	18
36	Effect of phosphorus supply on root traits of two Brassica oleracea L. genotypes. BMC Plant Biology, 2020, 20, 368.	1.6	15

#	Article	IF	CITATIONS
37	Novel Sources of Variation in Grain Yield, Components and Mineral Traits Identified in Wheat Amphidiploids Derived from Thinopyrum bessarabicum (Savul. & Rayss) Õ Löve (Poaceae) under Saline Soils in India. Sustainability, 2020, 12, 8975.	1.6	1
38	Biofortification of wheat with zinc for eliminating deficiency in Pakistan: study protocol for a cluster-randomised, double-blind, controlled effectiveness study (BIZIFED2). BMJ Open, 2020, 10, e039231.	0.8	25
39	Spatial prediction of the concentration of selenium (Se) in grain across part of Amhara Region, Ethiopia. Science of the Total Environment, 2020, 733, 139231.	3.9	24
40	Elemental composition of yerba mate (Ilex paraguariensis A.StHil.) under low input systems of southern Brazil. Science of the Total Environment, 2020, 736, 139637.	3.9	16
41	Selenium Deficiency Is Widespread and Spatially Dependent in Ethiopia. Nutrients, 2020, 12, 1565.	1.7	22
42	Identification of Wheat Cultivars for Low Nitrogen Tolerance Using Multivariable Screening Approaches. Agronomy, 2020, 10, 417.	1.3	18
43	Soil and foliar zinc application to biofortify broccoli (Brassica oleracea var. italica L.): effects on the zinc concentration and bioavailability. Plant, Soil and Environment, 2020, 66, 113-118.	1.0	9
44	Novel sources of variation in grain Zinc (Zn) concentration in bread wheat germplasm derived from Watkins landraces. PLoS ONE, 2020, 15, e0229107.	1.1	32
45	Inflammation Adjustment by Two Methods Decreases the Estimated Prevalence of Zinc Deficiency in Malawi. Nutrients, 2020, 12, 1563.	1.7	14
46	Nitrogen effect on zinc biofortification of maize and cowpea in Zimbabwean smallholder farms. Agronomy Journal, 2020, 112, 2256-2274.	0.9	22
47	Elemental signatures of an Amazonian Dark Earth as result of its formation process. Geoderma, 2020, 361, 114085.	2.3	14
48	Revisiting variation in leaf magnesium concentrations in forage grasses for improved animal health. Plant and Soil, 2020, 457, 43-55.	1.8	7
49	Selenium deficiency risks in sub-Saharan African food systems and their geospatial linkages. Proceedings of the Nutrition Society, 2020, 79, 457-467.	0.4	37
50	Minerals and potentially toxic elements in corn silage from tropical and subtropical Brazil. Revista Brasileira De Zootecnia, 2020, 49, .	0.3	2
51	Soil and foliar zinc biofortification of broccolini: effects on plant growth and mineral accumulation. Crop and Pasture Science, 2020, 71, 484.	0.7	5
52	A reconnaissance survey of farmers' awareness of hypomagnesaemic tetany in UK cattle and sheep farms. PLoS ONE, 2019, 14, e0223868.	1.1	6
53	Identification of QTLs for relative root traits associated with phosphorus efficiency in two culture systems in Brassica napus. Euphytica, 2019, 215, 1.	0.6	7
54	Juvenile root traits show limited correlation with grain yield, yield components and grain mineral composition traits in Indian wheat under hostile soils. Cereal Research Communications, 2019, 47, 369-382.	0.8	3

#	Article	IF	CITATIONS
55	The BiZiFED project: Biofortified zinc flour to eliminate deficiency in Pakistan. Nutrition Bulletin, 2019, 44, 60-64.	0.8	14
56	Combining two nationalâ€scale datasets to map soil properties, the case of available magnesium in England and Wales. European Journal of Soil Science, 2019, 70, 361-377.	1.8	15
57	Agronomic biofortification of cowpea with selenium: effects of selenate and selenite applications on selenium and phytate concentrations in seeds. Journal of the Science of Food and Agriculture, 2019, 99, 5969-5983.	1.7	42
58	Natural variation of arsenic fractions in soils of the Brazilian Amazon. Science of the Total Environment, 2019, 687, 1219-1231.	3.9	17
59	Fertilizer management and soil type influence grain zinc and iron concentration under contrasting smallholder cropping systems in Zimbabwe. Scientific Reports, 2019, 9, 6445.	1.6	54
60	The risk of selenium deficiency in Malawi is large and varies over multiple spatial scales. Scientific Reports, 2019, 9, 6566.	1.6	67
61	Can selenium deficiency in Malawi be alleviated through consumption of agro-biofortified maize flour? Study protocol for a randomised, double-blind, controlled trial. Trials, 2019, 20, 795.	0.7	20
62	Title is missing!. , 2019, 14, e0223868.		0
63	Title is missing!. , 2019, 14, e0223868.		0
64	Title is missing!. , 2019, 14, e0223868.		0
65	Title is missing!. , 2019, 14, e0223868.		0
66	Title is missing!. , 2019, 14, e0223868.		0
67	Title is missing!. , 2019, 14, e0223868.		0
68	Examining the effectiveness of consuming flour made from agronomically biofortified wheat (Zincol-2016/NR-421) for improving Zn status in women in a low-resource setting in Pakistan: study protocol for a randomised, double-blind, controlled cross-over trial (BiZiFED). BMJ Open, 2018, 8, e021364.	0.8	25
69	Variation in the angiosperm ionome. Physiologia Plantarum, 2018, 163, 306-322.	2.6	55
70	Physiological, biochemical, and ultrastructural characterization of selenium toxicity in cowpea plants. Environmental and Experimental Botany, 2018, 150, 172-182.	2.0	92
71	Identification and expression profiling of Pht1 phosphate transporters in wheat in controlled environments and in the field. Plant Biology, 2018, 20, 374-389.	1.8	29
72	Validation of an updated Associative Transcriptomics platform for the polyploid crop species <i>Brassica napus</i> by dissection of the genetic architecture of erucic acid and tocopherol isoform variation in seeds. Plant Journal, 2018, 93, 181-192.	2.8	75

#	Article	IF	CITATIONS
73	Species-Wide Variation in Shoot Nitrate Concentration, and Genetic Loci Controlling Nitrate, Phosphorus and Potassium Accumulation in Brassica napus L Frontiers in Plant Science, 2018, 9, 1487.	1.7	22
74	Linear relationships between shoot magnesium and calcium concentrations among angiosperm species are associated with cell wall chemistry. Annals of Botany, 2018, 122, 221-226.	1.4	30
75	Variation in grain Zn concentration, and the grain ionome, in field-grown Indian wheat. PLoS ONE, 2018, 13, e0192026.	1.1	71
76	Variation in tuber mineral concentrations among accessions of Solanum species held in the Commonwealth Potato Collection. Genetic Resources and Crop Evolution, 2017, 64, 1927-1935.	0.8	23
77	Genetic variants associated with the root system architecture of oilseed rape (Brassica napus L.) under contrasting phosphate supply. DNA Research, 2017, 24, 407-417.	1.5	52
78	Selenium Biofortification. Plant Ecophysiology, 2017, , 231-255.	1.5	31
79	Valuing increased zinc (Zn) fertiliser-use in Pakistan. Plant and Soil, 2017, 411, 139-150.	1.8	72
80	Approaches to reduce zinc and iron deficits in food systems. Global Food Security, 2017, 15, 1-10.	4.0	106
81	Breeding histories and selection criteria for oilseed rape in Europe and China identified by genome wide pedigree dissection. Scientific Reports, 2017, 7, 1916.	1.6	16
82	Evolutionary origins of abnormally large shoot sodium accumulation in nonsaline environments within the Caryophyllales. New Phytologist, 2017, 214, 284-293.	3.5	25
83	Zinc fertilization increases productivity and grain nutritional quality of cowpea (Vigna unguiculata) Tj ETQq1 1 0.	784314 rg 2.3	gBT_/Overlock
84	The influence of style and origin on mineral composition of beers retailing in the UK. European Food Research and Technology, 2017, 243, 931-939.	1.6	11
85	Elemental composition of Malawian rice. Environmental Geochemistry and Health, 2017, 39, 835-845.	1.8	28
86	Identification of Candidate Genes for Calcium and Magnesium Accumulation in Brassica napus L. by Association Genetics. Frontiers in Plant Science, 2017, 8, 1968.	1.7	39
87	Challenges and opportunities for Moringa growers in southern Ethiopia and Kenya. PLoS ONE, 2017, 12, e0187651.	1.1	16
88	Accelerating root system phenotyping of seedlings through a computer-assisted processing pipeline. Plant Methods, 2017, 13, 57.	1.9	11
89	A scanner-based rhizobox system enabling the quantification of root system development and response of <i>Brassica rapa</i> seedlings to external P availability. Plant Root, 2017, 11, 16-32.	0.3	7
90	Variation in the mineral element concentration of Moringa oleifera Lam. and M. stenopetala (Bak. f.) Cuf.: Role in human nutrition. PLoS ONE, 2017, 12, e0175503.	1.1	43

#	Article	lF	CITATIONS
91	Forage grasses with lower uptake of caesium and strontium could provide â€~safer' crops for radiologically contaminated areas. PLoS ONE, 2017, 12, e0176040.	1.1	8
92	Characterising variation in wheat traits under hostile soil conditions in India. PLoS ONE, 2017, 12, e0179208.	1.1	18
93	Root morphology and seed and leaf ionomic traits in a Brassica napus L. diversity panel show wide phenotypic variation and are characteristic of crop habit. BMC Plant Biology, 2016, 16, 214.	1.6	88
94	QTL meta-analysis of root traits in Brassica napus under contrasting phosphorus supply in two growth systems. Scientific Reports, 2016, 6, 33113.	1.6	55
95	A novel <i>Brassica</i> –rhizotron system to unravel the dynamic changes in root system architecture of oilseed rape under phosphorus deficiency. Annals of Botany, 2016, 118, 173-184.	1.4	30
96	Effects of rooting media on root growth and morphology of Brassica rapa seedlings. South African Journal of Plant and Soil, 2016, 33, 219-227.	0.4	4
97	High-throughput phenotyping (HTP) identifies seedling root traits linked to variation in seed yield and nutrient capture in field-grown oilseed rape (<i>Brassica napus</i> L.). Annals of Botany, 2016, 118, 655-665.	1.4	78
98	Analysis of root growth from a phenotyping data set using a density-based model. Journal of Experimental Botany, 2016, 67, 1045-1058.	2.4	26
99	Inter-cultivar variation in soil-to-plant transfer of radiocaesium and radiostrontium in Brassica oleracea. Journal of Environmental Radioactivity, 2016, 155-156, 112-121.	0.9	14
100	lodine source apportionment in the Malawian diet. Scientific Reports, 2015, 5, 15251.	1.6	28
101	Dietary mineral supplies in Malawi: spatial and socioeconomic assessment. BMC Nutrition, 2015, 1, .	0.6	70
102	Phylogenetic effects on shoot magnesium concentration. Crop and Pasture Science, 2015, 66, 1241.	0.7	16
103	Global magnesium supply in the food chain. Crop and Pasture Science, 2015, 66, 1278.	0.7	21
104	Caesium inhibits the colonization of Medicago truncatula by arbuscular mycorrhizal fungi. Journal of Environmental Radioactivity, 2015, 141, 57-61.	0.9	11
105	Dietary iron intakes based on food composition data may underestimate the contribution of potentially exchangeable contaminant iron from soil. Journal of Food Composition and Analysis, 2015, 40, 19-23.	1.9	26
106	Selenium in commercial beer and losses in the brewing process from wheat to beer. Food Chemistry, 2015, 182, 9-13.	4.2	17
107	Dietary calcium and zinc deficiency risks are decreasing but remain prevalent. Scientific Reports, 2015, 5, 10974.	1.6	325
108	Zinc-enriched fertilisers as a potential public health intervention in Africa. Plant and Soil, 2015, 389, 1-24.	1.8	120

#	Article	IF	CITATIONS
109	Soil type influences crop mineral composition in Malawi. Science of the Total Environment, 2015, 505, 587-595.	3.9	129
110	Antioxidant response and carboxylate metabolism in Brassica rapa exposed to different external Zn, Ca, and Mg supply. Journal of Plant Physiology, 2015, 176, 16-24.	1.6	48
111	Anthocyanin production in the hyperaccumulator plant Noccaea caerulescens in response to herbivory and zinc stress. Acta Physiologiae Plantarum, 2015, 37, 1.	1.0	13
112	Inter-varietal variation in caesium and strontium uptake by plants: aÂmeta-analysis. Journal of Environmental Radioactivity, 2015, 139, 103-117.	0.9	23
113	Potential roles of underutilized crops/trees in selenium nutrition in Malawi. , 2015, , 151-152.		Ο
114	Efficient Mineral Nutrition: Genetic Improvement of Phosphate Uptake and Use Efficiency in Crops. Plant Ecophysiology, 2014, , 93-132.	1.5	3
115	Genetical and Comparative Genomics of <i>Brassica</i> under Altered Ca Supply Identifies <i>Arabidopsis</i> Ca-Transporter Orthologs Â. Plant Cell, 2014, 26, 2818-2830.	3.1	40
116	Dietary mineral supplies in Africa. Physiologia Plantarum, 2014, 151, 208-229.	2.6	178
117	A scanner system for high-resolution quantification of variation in root growth dynamics of Brassica rapa genotypes. Journal of Experimental Botany, 2014, 65, 2039-2048.	2.4	96
118	Risk of dietary magnesium deficiency is low in most African countries based on food supply data. Plant and Soil, 2013, 368, 129-137.	1.8	23
119	Soil-type influences human selenium status and underlies widespread selenium deficiency risks in Malawi. Scientific Reports, 2013, 3, 1425.	1.6	104
120	High-throughput root phenotyping screens identify genetic loci associated with root architectural traits in Brassica napus under contrasting phosphate availabilities. Annals of Botany, 2013, 112, 381-389.	1.4	90
121	A High Prevalence of Zinc- but not Iron-Deficiency among Women in Rural Malawi: a Cross-Sectional Study. International Journal for Vitamin and Nutrition Research, 2013, 83, 176-187.	0.6	43
122	Analyzing Lateral Root Development: How to Move Forward. Plant Cell, 2012, 24, 15-20.	3.1	125
123	Tackling Drought Stress: RECEPTOR-LIKE KINASES Present New Approaches. Plant Cell, 2012, 24, 2262-2278.	3.1	155
124	Bio-fortification of potato tubers using foliar zinc-fertiliser. Journal of Horticultural Science and Biotechnology, 2012, 87, 123-129.	0.9	37
125	Distribution of calcium (Ca) and magnesium (Mg) in the leaves of Brassica rapa under varying exogenous Ca and Mg supply. Annals of Botany, 2012, 109, 1081-1089.	1.4	43
126	Testing the distinctness of shoot ionomes of angiosperm families using the Rothamsted Park Grass Continuous Hay Experiment. New Phytologist, 2012, 196, 101-109.	3.5	79

#	Article	IF	CITATIONS
127	Analysis of ripening-related gene expression in papaya using an Arabidopsis-based microarray. BMC Plant Biology, 2012, 12, 242.	1.6	41
128	Beneficial Elements. , 2012, , 249-269.		70
129	Function of Nutrients. , 2012, , 191-248.		383
130	Managing the Nutrition of Plants and People. Applied and Environmental Soil Science, 2012, 2012, 1-13.	0.8	56
131	Some elements are more equal than others: soil-to-plant transfer of radiocaesium and radiostrontium, revisited. Plant and Soil, 2012, 355, 23-27.	1.8	28
132	Exploiting natural variation to uncover candidate genes that control element accumulation in Arabidopsis thaliana. New Phytologist, 2012, 193, 859-866.	3.5	24
133	Agronomic biofortification of maize with selenium (Se) in Malawi. Field Crops Research, 2012, 125, 118-128.	2.3	141
134	Assessing residual availability of selenium applied to maize crops in Malawi. Field Crops Research, 2012, 134, 11-18.	2.3	29
135	Dietary Requirements for Magnesium, but not Calcium, are Likely to be met in Malawi Based on National Food Supply Data. International Journal for Vitamin and Nutrition Research, 2012, 82, 192-199.	0.6	17
136	Selenium in Human Health and Disease. Antioxidants and Redox Signaling, 2011, 14, 1337-1383.	2.5	1,003
137	Effects of Selenium Supplementation on Selenoprotein Gene Expression and Response to Influenza Vaccine Challenge: A Randomised Controlled Trial. PLoS ONE, 2011, 6, e14771.	1.1	37
138	Physiological Limits to Zinc Biofortification of Edible Crops. Frontiers in Plant Science, 2011, 2, 80.	1.7	223
139	Generation of nonvernalâ€obligate, fasterâ€eycling <i>Noccaea caerulescens</i> lines through fast neutron mutagenesis. New Phytologist, 2011, 189, 409-414.	3.5	10
140	High Resolution Melt (HRM) analysis is an efficient tool to genotype EMS mutants in complex crop genomes. Plant Methods, 2011, 7, 43.	1.9	79
141	Screening for genotype and environment effects on nitrate accumulation in 24 species of young lettuce. Journal of the Science of Food and Agriculture, 2011, 91, 553-562.	1.7	41
142	Selenium concentration and speciation in biofortified flour and bread: Retention of selenium during grain biofortification, processing and production of Se-enriched food. Food Chemistry, 2011, 126, 1771-1778.	4.2	110
143	The three-dimensional distribution of minerals in potato tubers. Annals of Botany, 2011, 107, 681-691.	1.4	93
144	A Comparison of Sulfate and Selenium Accumulation in Relation to the Expression of Sulfate Transporter Genes in <i>Astragalus</i> Species. Plant Physiology, 2011, 157, 2227-2239.	2.3	72

#	Article	IF	CITATIONS
145	Regulatory Hotspots Are Associated with Plant Gene Expression under Varying Soil Phosphorus Supply in <i>Brassica rapa</i> Â Â Â. Plant Physiology, 2011, 156, 1230-1241.	2.3	60
146	Maize grain and soil surveys reveal suboptimal dietary selenium intake is widespread in Malawi. Scientific Reports, 2011, 1, 72.	1.6	115
147	Tandem Quadruplication of HMA4 in the Zinc (Zn) and Cadmium (Cd) Hyperaccumulator Noccaea caerulescens. PLoS ONE, 2011, 6, e17814.	1.1	112
148	Gene Expression Changes in Phosphorus Deficient Potato (Solanum tuberosum L.) Leaves and the Potential for Diagnostic Gene Expression Markers. PLoS ONE, 2011, 6, e24606.	1.1	41
149	Shoot zinc (Zn) concentration varies widely within <i>Brassica oleracea</i> L. and is affected by soil Zn and phosphorus (P) levels. Journal of Horticultural Science and Biotechnology, 2010, 85, 375-380.	0.9	42
150	Soil factors affecting selenium concentration in wheat grain and the fate and speciation of Se fertilisers applied to soil. Plant and Soil, 2010, 332, 19-30.	1.8	84
151	Impact of sulphur fertilisation on crop response to selenium fertilisation. Plant and Soil, 2010, 332, 31-40.	1.8	70
152	Selenium biofortification of high-yielding winter wheat (Triticum aestivum L.) by liquid or granular Se fertilisation. Plant and Soil, 2010, 332, 5-18.	1.8	242
153	Equine transcriptome quantification using human GeneChip arrays can be improved using genomic DNA hybridisation and probe selection. Veterinary Journal, 2010, 186, 323-327.	0.6	5
154	An efficient procedure for normalizing ionomics data for <i>Arabidopsis thaliana</i> . New Phytologist, 2010, 186, 270-274.	3.5	18
155	Response to zinc deficiency of two rice lines with contrasting tolerance is determined by root growth maintenance and organic acid exudation rates, and not by zincâ€transporter activity. New Phytologist, 2010, 186, 400-414.	3.5	106
156	A Brassica Exon Array for Whole-Transcript Gene Expression Profiling. PLoS ONE, 2010, 5, e12812.	1.1	27
157	Establishing optimal selenium status: results of a randomized, double-blind, placebo-controlled trial. American Journal of Clinical Nutrition, 2010, 91, 923-931.	2.2	226
158	Eats roots and leaves. Can edible horticultural crops address dietary calcium, magnesium and potassium deficiencies?. Proceedings of the Nutrition Society, 2010, 69, 601-612.	0.4	85
159	Genetic analysis of potassium use efficiency in Brassica oleracea. Annals of Botany, 2010, 105, 1199-1210.	1.4	54
160	Cation Channels and the Uptake of Radiocaesium by Plants. Signaling and Communication in Plants, 2010, , 47-67.	0.5	8
161	Relationships Between Yield and Mineral Concentrations in Potato Tubers. Hortscience: A Publication of the American Society for Hortcultural Science, 2009, 44, 6-11.	0.5	109
162	Biofortification of crops with seven mineral elements often lacking in human diets – iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytologist, 2009, 182, 49-84.	3.5	1,667

#	Article	IF	CITATIONS
163	Shoot yield drives phosphorus use efficiency in Brassica oleracea and correlates with root architecture traits. Journal of Experimental Botany, 2009, 60, 1953-1968.	2.4	278
164	Evidence of neutral transcriptome evolution in plants. New Phytologist, 2008, 180, 587-593.	3.5	30
165	Shoot Calcium and Magnesium Concentrations Differ between Subtaxa, Are Highly Heritable, and Associate with Potentially Pleiotropic Loci in <i>Brassica oleracea</i> Â Â Â. Plant Physiology, 2008, 146, 1707-1720.	2.3	107
166	Extraordinarily High Leaf Selenium to Sulfur Ratios Define â€~Se-accumulator' Plants. Annals of Botany, 2007, 100, 111-118.	1.4	149
167	Selenium and its relationship with sulfur. Plant Ecophysiology, 2007, , 225-252.	1.5	25
168	Using Quantitative Trait Loci Analysis to Select Plants for Altered Radionuclide Accumulation. Methods in Biotechnology, 2007, , 27-47.	0.2	1
169	Zinc in plants. New Phytologist, 2007, 173, 677-702.	3.5	1,577
170	Evolutionary control of leaf element composition in plants. New Phytologist, 2007, 174, 516-523.	3.5	304
171	Optimising the analysis of transcript data using high density oligonucleotide arrays and genomic DNA-based probe selection. BMC Genomics, 2007, 8, 344.	1.2	11
172	A comparison of the Thlaspi caerulescens and Thlaspi arvense shoot transcriptomes. New Phytologist, 2006, 170, 239-260.	3.5	213
173	Relative Values of Physiological Parameters of P Response of Different Genotypes can be Measured in Experiments with Only Two P Treatments. Plant and Soil, 2006, 281, 159-172.	1.8	12
174	Biofortification of UK food crops with selenium. Proceedings of the Nutrition Society, 2006, 65, 169-181.	0.4	378
175	Phosphorus Response Components of Different Brassica oleracea Genotypes Are Reproducible in Different Environments. Crop Science, 2005, 45, 1728-1735.	0.8	27
176	Phylogenetic Variation in the Silicon Composition of Plants. Annals of Botany, 2005, 96, 1027-1046.	1.4	842
177	Biofortifying crops with essential mineral elements. Trends in Plant Science, 2005, 10, 586-593.	4.3	768
178	Using genomic DNA-based probe-selection to improve the sensitivity of high-density oligonucleotide arrays when applied to heterologous species. Plant Methods, 2005, 1, 10.	1.9	73
179	Phylogenetic variation in the shoot mineral concentration of angiosperms. Journal of Experimental Botany, 2004, 55, 321-336.	2.4	235
180	Interactions between selenium and sulphur nutrition in Arabidopsis thaliana. Journal of Experimental Botany, 2004, 55, 1927-1937.	2.4	368

#	Article	IF	CITATIONS
181	Preface to Genetics of Plant Mineral Nutrition. Journal of Experimental Botany, 2004, 55, iv-iv.	2.4	1
182	Natural genetic variation in caesium (Cs) accumulation by Arabidopsis thaliana. New Phytologist, 2004, 162, 535-548.	3.5	64
183	Genetic Responses to Phosphorus Deficiency. Annals of Botany, 2004, 94, 323-332.	1.4	269
184	Estimating radionuclide transfer to wild species—data requirements and availability for terrestrial ecosystems. Journal of Radiological Protection, 2004, 24, A89-A103.	0.6	52
185	Cesium Toxicity in Arabidopsis. Plant Physiology, 2004, 136, 3824-3837.	2.3	168
186	Applying a solute transfer model to phytoextraction: Zinc acquisition by Thlaspi caerulescens. Plant and Soil, 2003, 249, 45-56.	1.8	44
187	Selecting plants to minimise radiocaesium in the food chain. Plant and Soil, 2003, 249, 177-186.	1.8	62
188	Calcium in Plants. Annals of Botany, 2003, 92, 487-511.	1.4	1,666
189	Changes in Gene Expression in Arabidopsis Shoots during Phosphate Starvation and the Potential for Developing Smart Plants. Plant Physiology, 2003, 132, 578-596.	2.3	393
190	The nitrogen and nitrate economy of butterhead lettuce (Lactuca sativa var. capitata L.). Journal of Experimental Botany, 2003, 54, 2081-2090.	2.4	28
191	Variation in the shoot calcium content of angiosperms. Journal of Experimental Botany, 2003, 54, 1431-1446.	2.4	131
192	RELATIONSHIPS BETWEEN PHOSPHORUS FORMS AND PLANT GROWTH. Journal of Plant Nutrition, 2002, 25, 1075-1088.	0.9	6
193	Does zinc move apoplastically to the xylem in roots of Thlaspi caerulescens?. New Phytologist, 2002, 153, 201-207.	3.5	109
194	Aluminum Hyperaccumulation in Angiosperms: A Review of Its Phylogenetic Significance. Botanical Review, The, 2002, 68, 235-269.	1.7	222
195	Chloride in Soils and its Uptake and Movement within the Plant: A Review. Annals of Botany, 2001, 88, 967-988.	1.4	499
196	Phylogenetic variation in heavy metal accumulation in angiosperms. New Phytologist, 2001, 152, 9-27.	3.5	191
197	Nitrogen-limited growth of lettuce is associated with lower stomatal conductance. New Phytologist, 2001, 152, 97-106.	3.5	52
198	Influx and accumulation of Cs+ by the akt1 mutant of Arabidopsis thaliana (L.) Heynh. lacking a dominant K+ transport system. Journal of Experimental Botany, 2001, 52, 839-844.	2.4	66

#	Article	IF	CITATIONS
199	Tansley Review No. 113. New Phytologist, 2000, 147, 241-256.	3.5	317
200	What are the effects of nitrogen deficiency on growth components of lettuce?. New Phytologist, 2000, 147, 519-526.	3.5	60
201	A comparison of caesium uptake kinetics in eight species of grass. Journal of Environmental Radioactivity, 1999, 46, 225-236.	0.9	13
202	A method to assess taxonomic variation in shoot caesium concentration among flowering plants. Environmental Pollution, 1999, 106, 341-349.	3.7	93
203	Differences in root uptake of radiocaesium by 30 plant taxa. Environmental Pollution, 1997, 97, 11-15.	3.7	87
204	Stakeholder interpretation of probabilistic representations of uncertainty in spatial information: an example on the nutritional quality of staple crops. International Journal of Geographical Information Science, 0, , 1-27.	2.2	2