
Manukumara Manjappa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9078968/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Reconfigurable MEMS Fano metasurfaces with multiple-input–output states for logic operations at terahertz frequencies. Nature Communications, 2018, 9, 4056.	5.8	200
2	Active Control of Electromagnetically Induced Transparency Analog in Terahertz MEMS Metamaterial. Advanced Optical Materials, 2016, 4, 541-547.	3.6	198
3	Sensing with toroidal metamaterial. Applied Physics Letters, 2017, 110, .	1.5	187
4	Active Photoswitching of Sharp Fano Resonances in THz Metadevices. Advanced Materials, 2017, 29, 1603355.	11.1	180
5	Fano Resonances in Terahertz Metasurfaces: A Figure of Merit Optimization. Advanced Optical Materials, 2015, 3, 1537-1543.	3.6	176
6	MoS ₂ for Ultrafast Allâ€Optical Switching and Modulation of THz Fano Metaphotonic Devices. Advanced Optical Materials, 2017, 5, 1700762.	3.6	146
7	Hybrid Lead Halide Perovskites for Ultrasensitive Photoactive Switching in Terahertz Metamaterial Devices. Advanced Materials, 2017, 29, 1605881.	11.1	140
8	Tailoring the slow light behavior in terahertz metasurfaces. Applied Physics Letters, 2015, 106, .	1.5	127
9	Ultrafast Allâ€Optical Switching of Germaniumâ€Based Flexible Metaphotonic Devices. Advanced Materials, 2018, 30, 1705331.	11.1	111
10	Active control and switching of broadband electromagnetically induced transparency in symmetric metadevices. Applied Physics Letters, 2017, 111, .	1.5	107
11	Ultrahighâ€ <i>Q</i> Fano Resonances in Terahertz Metasurfaces: Strong Influence of Metallic Conductivity at Extremely Low Asymmetry. Advanced Optical Materials, 2016, 4, 457-463.	3.6	106
12	Strong self-trapping by deformation potential limits photovoltaic performance in bismuth double perovskite. Science Advances, 2021, 7, .	4.7	98
13	Lattice-induced transparency in planar metamaterials. Physical Review B, 2016, 94, .	1.1	95
14	Excitons in 2D perovskites for ultrafast terahertz photonic devices. Science Advances, 2020, 6, eaax8821.	4.7	95
15	A Superconducting Dual hannel Photonic Switch. Advanced Materials, 2018, 30, e1801257.	11.1	86
16	Solutionâ€Processed Lead Iodide for Ultrafast Allâ€Optical Switching of Terahertz Photonic Devices. Advanced Materials, 2019, 31, e1901455.	11.1	81
17	Microfluidic metamaterial sensor: Selective trapping and remote sensing of microparticles. Journal of Applied Physics, 2017, 121, .	1.1	80
18	Shaping Highâ€ <i>Q</i> Planar Fano Resonant Metamaterials toward Futuristic Technologies. Advanced Optical Materials, 2018, 6, 1800502.	3.6	70

Manukumara Manjappa

#	Article	IF	CITATIONS
19	Active control of near-field coupling in conductively coupled microelectromechanical system metamaterial devices. Applied Physics Letters, 2016, 108, .	1.5	67
20	Active Control of Resonant Cloaking in a Terahertz MEMS Metamaterial. Advanced Optical Materials, 2018, 6, 1800141.	3.6	67
21	Accessing the Highâ€∢i>Q Dark Plasmonic Fano Resonances in Superconductor Metasurfaces. Advanced Optical Materials, 2016, 4, 1875-1881.	3.6	58
22	Active control of electromagnetically induced transparency with dual dark mode excitation pathways using MEMS based tri-atomic metamolecules. Applied Physics Letters, 2016, 109, .	1.5	54
23	Lattice induced strong coupling and line narrowing of split resonances in metamaterials. Applied Physics Letters, 2018, 112, .	1.5	46
24	High Mobility 3D Dirac Semimetal (Cd ₃ As ₂) for Ultrafast Photoactive Terahertz Photonics. Advanced Functional Materials, 2021, 31, 2011011.	7.8	46
25	Magnetic annihilation of the dark mode in a strongly coupled bright–dark terahertz metamaterial. Optics Letters, 2017, 42, 2106.	1.7	37
26	Active MEMS metamaterials for THz bandwidth control. Applied Physics Letters, 2017, 110, .	1.5	35
27	Dynamic Color Generation with Electrically Tunable Thin Film Optical Coatings. Nano Letters, 2021, 21, 10070-10075.	4.5	33
28	Tailoring the Electromagnetically Induced Transparency and Absorbance in Coupled Fano–Lorentzian Metasurfaces: A Classical Analog of a Four‣evel Tripod Quantum System. Advanced Optical Materials, 2016, 4, 1179-1185.	3.6	32
29	Nonlinear THzâ€Nano Metasurfaces. Advanced Functional Materials, 2021, 31, 2100463.	7.8	31
30	Bidirectional reconfiguration and thermal tuning of microcantilever metamaterial device operating from 77 K to 400 K. Applied Physics Letters, 2017, 111, .	1.5	30
31	Materials for Terahertz Optical Science and Technology. Advanced Optical Materials, 2020, 8, 1901984.	3.6	26
32	Colorâ€6ensitive Ultrafast Optical Modulation and Switching of Terahertz Plasmonic Devices. Advanced Optical Materials, 2018, 6, 1800030.	3.6	22
33	Carbon Nanotube Devices for Quantum Technology. Materials, 2022, 15, 1535.	1.3	22
34	Effects of temperature and ground-state coherence decay on enhancement and amplification in a <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>Δ</mml:mi>atomic system. Physical Review A, 2014, 90, .</mml:math 	1.0	19
35	Guided-mode resonances in flexible 2D terahertz photonic crystals. Optica, 2020, 7, 537.	4.8	17
36	Lensing effect of electromagnetically induced transparency involving a Rydberg state. Physical Review A, 2015, 92, .	1.0	16

#	Article	IF	CITATIONS
37	Nonradiative and Radiative Resonances in Coupled Metamolecules. Advanced Optical Materials, 2016, 4, 252-258.	3.6	11
38	Ultrafast THz photophysics of solvent engineered triple-cation halide perovskites. Journal of Applied Physics, 2018, 124, .	1.1	4
39	Metamaterials: Active Control of Electromagnetically Induced Transparency Analog in Terahertz MEMS Metamaterial (Advanced Optical Materials 4/2016). Advanced Optical Materials, 2016, 4, 540-540.	3.6	3
40	Nonlinear THzâ€Nano Metasurfaces: Nonlinear THzâ€Nano Metasurfaces (Adv. Funct. Mater. 24/2021). Advanced Functional Materials, 2021, 31, 2170170.	7.8	3
41	Directional optical switch using interacting dark states. Journal of the Optical Society of America B: Optical Physics, 2010, 27, 1778.	0.9	0
42	Particle-trap array on metamaterial for selective detection in terahertz region. , 2016, , .		0
43	Active control of electromagnetically induced transparency analogue and slow light phenomena via MEMS based terahertz metamaterials. , 2016, , .		0
44	Tailoring the Fano resonances in terahertz metamaterials. , 2016, , .		0
45	Reconfigurable MEMS metamaterial based active THz photonics. , 2019, , .		0
46	Reconfigurable MEMS metasurface for active tuning of Fano resonance and logic gate operations at THz frequencies. , 2019, , .		0