Sylvie Coscoy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9078583/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dynamics of Endothelial Engagement and Filopodia Formation in Complex 3D Microscaffolds. International Journal of Molecular Sciences, 2022, 23, 2415.	1.8	2
2	A role for Dynlt3 in melanosome movement, distribution, acidity and transfer. Communications Biology, 2021, 4, 423.	2.0	3
3	Loss of the Metastasis Suppressor NME1, But Not of Its Highly Related Isoform NME2, Induces a Hybrid Epithelial–Mesenchymal State in Cancer Cells. International Journal of Molecular Sciences, 2021, 22, 3718.	1.8	5
4	A Multitubular Kidney-on-Chip to Decipher Pathophysiological Mechanisms in Renal Cystic Diseases. Frontiers in Bioengineering and Biotechnology, 2021, 9, 624553.	2.0	8
5	Mutations in calmodulin-binding domains of TRPV4/6 channels confer invasive properties to colon adenocarcinoma cells. Channels, 2020, 14, 101-109.	1.5	16
6	Engineering small tubes with changes in diameter for the study of kidney cell organization. Biomicrofluidics, 2018, 12, 024114.	1.2	10
7	Microtopographies control the development of basal protrusions in epithelial sheets. Biointerphases, 2018, 13, 041003.	0.6	4
8	Polycystins and intercellular mechanotransduction: A precise dosage of polycystin 2 is necessary for alpha-actinin reinforcement of junctions upon mechanical stimulation. Experimental Cell Research, 2016, 348, 23-35.	1.2	7
9	Transient microfluidic compartmentalization using actionable microfilaments for biochemical assays, cell culture and organs-on-chip. Lab on A Chip, 2016, 16, 4691-4701.	3.1	20
10	Mechanosensitive Adaptation of E-Cadherin Turnover across adherens Junctions. PLoS ONE, 2015, 10, e0128281.	1.1	30
11	Interplay of RhoA and mechanical forces in collective cell migration driven by leader cells. Nature Cell Biology, 2014, 16, 217-223.	4.6	305
12	New Insights into the Regulation of E-cadherin Distribution by Endocytosis. International Review of Cell and Molecular Biology, 2012, 295, 63-108.	1.6	32
13	Orientation and Polarity in Collectively Migrating Cell Structures: Statics and Dynamics. Biophysical Journal, 2011, 100, 2566-2575.	0.2	111
14	Endocytosis is required for E-cadherin redistribution at mature <i>adherens</i> junctions. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 7010-7015.	3.3	153
15	Statistical Analysis of Sets of Random Walks: HowÂtoÂResolve Their Generating Mechanism. Bulletin of Mathematical Biology, 2007, 69, 2467-2492.	0.9	24
16	A Two-Photon FRAP Analysis of the Cytoskeleton Dynamics in the Microvilli of Intestinal Cells. Biophysical Journal, 2005, 88, 1467-1478.	0.2	53
17	The ENaC/Deg family of cation channels. Advances in Molecular and Cell Biology, 2004, 32, 303-329.	0.1	2
18	Two-photon FRAP experiments and simulations to study the dynamics of cytoskeletal proteins. , 2004, ,		0

SYLVIE COSCOY

#	Article	IF	CITATIONS
19	Molecular analysis of microscopic ezrin dynamics by two-photon FRAP. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 12813-12818.	3.3	101
20	Early expression of β- and γ-subunits of epithelial sodium channel during human airway development. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2000, 278, L177-L184.	1.3	31
21	The Pre-transmembrane 1 Domain of Acid-sensing Ion Channels Participates in the Ion Pore. Journal of Biological Chemistry, 1999, 274, 10129-10132.	1.6	78
22	Polymorphisms of the Î ³ subunit of the epithelial Na+ channel in essential hypertension. Journal of Hypertension, 1999, 17, 639-645.	0.3	48
23	The Phe-Met-Arg-Phe-amide-activated Sodium Channel Is a Tetramer. Journal of Biological Chemistry, 1998, 273, 8317-8322.	1.6	100
24	dGNaC1, a Gonad-specific Amiloride-sensitive Na+Channel. Journal of Biological Chemistry, 1998, 273, 9424-9429.	1.6	36
25	The Amiloride-Sensitive Na+ Channel: From Primary Structure to Function. Comparative Biochemistry and Physiology A, Comparative Physiology, 1997, 118, 193-200.	0.7	28