Yingxiang Ye

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9078320/publications.pdf

Version: 2024-02-01

		126858	133188
59	4,098 citations	33	59
papers	citations	h-index	g-index
50	50	50	2020
59	59	59	2928
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Maximizing acetylene packing density for highly efficient C2H2/CO2 separation through immobilization of amine sites within a prototype MOF. Chemical Engineering Journal, 2022, 431, 134184.	6.6	49
2	Metal–Organic Framework Based Hydrogen-Bonding Nanotrap for Efficient Acetylene Storage and Separation. Journal of the American Chemical Society, 2022, 144, 1681-1689.	6.6	172
3	A Microporous Hydrogen-Bonded Organic Framework for Efficient Xe/Kr Separation. ACS Applied Materials & Samp; Interfaces, 2022, 14, 19623-19628.	4.0	44
4	Isoreticular Double Interpenetrating Copper–Pyrazolate–Carboxylate Frameworks for Efficient CO ₂ Capture. Crystal Growth and Design, 2022, 22, 3853-3861.	1.4	5
5	Utilization of cationic microporous metal-organic framework for efficient Xe/Kr separation. Nano Research, 2022, 15, 7559-7564.	5.8	25
6	High proton conductivity in metalloring-cluster based metal-organic nanotubes. Nano Research, 2021, 14, 387-391.	5.8	19
7	A Fluorescent Metal–Organic Framework for Food Realâ€Time Visual Monitoring. Advanced Materials, 2021, 33, e2008020.	11.1	139
8	Ethylene/ethane separation in a stable hydrogen-bonded organic framework through a gating mechanism. Nature Chemistry, 2021, 13, 933-939.	6.6	235
9	Secondâ€Sphere Interaction Promoted Turnâ€On Fluorescence for Selective Sensing of Organic Amines in a Tb ^{lll} â€based Macrocyclic Framework. Angewandte Chemie, 2021, 133, 23898-23905.	1.6	8
10	Secondâ€Sphere Interaction Promoted Turnâ€On Fluorescence for Selective Sensing of Organic Amines in a Tb ^{Ill} â€based Macrocyclic Framework. Angewandte Chemie - International Edition, 2021, 60, 23705-23712.	7.2	48
11	Highly Selective Adsorption of Carbon Dioxide over Acetylene in an Ultramicroporous Metal–Organic Framework. Advanced Materials, 2021, 33, e2105880.	11.1	66
12	An Ultramicroporous Metal-Organic Framework with Record High Selectivity for Inverse CO2/C2H2 Separation. Bulletin of the Chemical Society of Japan, 2021, 94, 2698-2701.	2.0	13
13	Microporous polycarbazole frameworks with large conjugated π systems for cyclohexane separation from cyclohexane-containing mixtures. New Journal of Chemistry, 2021, 45, 22437-22443.	1.4	6
14	A microporous metal–organic framework with naphthalene diimide groups for high methane storage. Dalton Transactions, 2020, 49, 3658-3661.	1.6	31
15	A metal-organic framework with double interpenetrated frameworks for effective C2H2/CO2 separation. Inorganic Chemistry Communication, 2020, 112, 107721.	1.8	4
16	Isoreticular Microporous Metal–Organic Frameworks for Carbon Dioxide Capture. Inorganic Chemistry, 2020, 59, 17143-17148.	1.9	33
17	A Robust Mixedâ€Lanthanide PolyMOF Membrane for Ratiometric Temperature Sensing. Angewandte Chemie - International Edition, 2020, 59, 21752-21757.	7.2	115
18	A Robust Mixed‣anthanide PolyMOF Membrane for Ratiometric Temperature Sensing. Angewandte Chemie, 2020, 132, 21936-21941.	1.6	23

#	Article	IF	CITATIONS
19	Isostructural MOFs with Higher Proton Conductivity for Improved Oxygen Evolution Reaction Performance. ACS Applied Materials & Samp; Interfaces, 2020, 12, 16367-16375.	4.0	28
20	Metal–Organic Frameworks as a Versatile Platform for Proton Conductors. Advanced Materials, 2020, 32, e1907090.	11.1	255
21	Inserting V-Shaped Bidentate Partition Agent into MIL-88-Type Framework for Acetylene Separation from Acetylene-Containing Mixtures. Crystal Growth and Design, 2020, 20, 2099-2105.	1.4	17
22	Solvent-Assisted Modification to Enhance Proton Conductivity and Water Stability in Metal Phosphonates. Inorganic Chemistry, 2020, 59, 3518-3522.	1.9	29
23	A microporous metal-organic framework with basic sites for efficient C2H2/CO2 separation. Journal of Solid State Chemistry, 2020, 284, 121209.	1.4	13
24	Integrating the Pillared-Layer Strategy and Pore-Space Partition Method to Construct Multicomponent MOFs for C ₂ H ₂ /CO ₂ Separation. Journal of the American Chemical Society, 2020, 142, 9258-9266.	6.6	141
25	Simultaneous implementation of resistive switching and rectifying effects in a metal-organic framework with switched hydrogen bond pathway. Science Advances, 2019, 5, eaaw4515.	4.7	90
26	Loading Photochromic Molecules into a Luminescent Metal–Organic Framework for Information Anticounterfeiting. Angewandte Chemie - International Edition, 2019, 58, 18025-18031.	7.2	205
27	Loading Photochromic Molecules into a Luminescent Metal–Organic Framework for Information Anticounterfeiting. Angewandte Chemie, 2019, 131, 18193-18199.	1.6	62
28	Microporous Copper Isophthalate Framework of mot Topology for C ₂ H ₂ /CO ₂ Separation. Crystal Growth and Design, 2019, 19, 5829-5835.	1.4	40
29	A microporous metal-organic framework of sql topology for C2H2/CO2 separation. Inorganica Chimica Acta, 2019, 495, 118938.	1.2	28
30	Metal–Organic Framework with Rich Accessible Nitrogen Sites for Highly Efficient CO ₂ Capture and Separation. Inorganic Chemistry, 2019, 58, 7754-7759.	1.9	47
31	Enhancement of Intrinsic Proton Conductivity and Aniline Sensitivity by Introducing Dye Molecules into the MOF Channel. ACS Applied Materials & Eamp; Interfaces, 2019, 11, 16490-16495.	4.0	65
32	Pore Space Partition within a Metal–Organic Framework for Highly Efficient C ₂ H ₂ /CO ₂ Separation. Journal of the American Chemical Society, 2019, 141, 4130-4136.	6.6	338
33	Construction of a thiourea-based metal–organic framework with open Ag ⁺ sites for the separation of propene/propane mixtures. Journal of Materials Chemistry A, 2019, 7, 25567-25572.	5.2	33
34	Metalo Hydrogenâ€Bonded Organic Frameworks (MHOFs) as New Class of Crystalline Materials for Protonic Conduction. Chemistry - A European Journal, 2019, 25, 1691-1695.	1.7	92
35	MOF-derived binary mixed carbon/metal oxide porous materials for constructing simultaneous determination of hydroquinone and catechol sensor. Journal of Solid State Electrochemistry, 2019, 23, 81-89.	1.2	47
36	Sulfonated periodic-mesoporous-organosilicas column for selective separation of C $_2$ H $_2$ /CH $_4$ mixtures. Journal of Solid State Chemistry, 2018, 264, 113-118.	1.4	12

#	Article	IF	Citations
37	Facile synthesis of oxidized activated carbons for high-selectivity and low-enthalpy CO ₂ capture from flue gas. New Journal of Chemistry, 2018, 42, 4495-4500.	1.4	7
38	Microporous metal–organic frameworks with open metal sites and π-Lewis acidic pore surfaces for recovering ethylene from polyethylene off-gas. Journal of Materials Chemistry A, 2018, 6, 20822-20828.	5.2	30
39	Photochromic naphthalene diimide Cd-MOFs based on different second dicarboxylic acid ligands. CrystEngComm, 2018, 20, 7567-7573.	1.3	43
40	Robustness, Selective Gas Separation, and Nitrobenzene Sensing on Two Isomers of Cadmium Metal–Organic Frameworks Containing Various Metal–O–Metal Chains. Inorganic Chemistry, 2018, 57, 12961-12968.	1.9	87
41	Thermal Conversion of MOF@MOF: Synthesis of an Nâ€Doped Carbon Material with Excellent ORR Performance. ChemPlusChem, 2018, 83, 1044-1051.	1.3	18
42	An antiferromagnetic metalloring pyrazolate (Pz) framework with [Cu ₁₂] nodes for separation of C ₂ H ₂ /CH ₄ mixture. Journal of Materials Chemistry A, 2018, 6, 19681-19688.	5.2	21
43	A naphthalene diimide-based MOF with mog net featuring photochromic behaviors and high stability. Inorganic Chemistry Communication, 2018, 93, 105-109.	1.8	19
44	Mixed-Valence Cobalt(II/III) Metal–Organic Framework for Ammonia Sensing with Naked-Eye Color Switching. ACS Applied Materials & Samp; Interfaces, 2018, 10, 27465-27471.	4.0	75
45	Loading Acid–Base Pairs into Periodic Mesoporous Organosilica for High Anhydrous Proton Conductivity over a Wide Operating Temperature Window. ACS Applied Energy Materials, 2018, 1, 5068-5074.	2.5	31
46	Additive-Induced Supramolecular Isomerism and Enhancement of Robustness in Co(II)-Based MOFs for Efficiently Trapping Acetylene from Acetylene-Containing Mixtures. ACS Applied Materials & Samp; Interfaces, 2018, 10, 30912-30918.	4.0	67
47	Enhanced Intrinsic Proton Conductivity of Metal–Organic Frameworks by Tuning the Degree of Interpenetration. Crystal Growth and Design, 2018, 18, 3724-3728.	1.4	62
48	Highly Selective Adsorption of C ₂ /C ₁ Mixtures and Solvent-Dependent Thermochromic Properties in Metal–Organic Frameworks Containing Infinite Copper-Halogen Chains. Crystal Growth and Design, 2017, 17, 2081-2089.	1.4	48
49	Rationally tuning host–guest interactions to free hydroxide ions within intertrimerically cuprophilic metal–organic frameworks for high OH ^{â^³} conductivity. Journal of Materials Chemistry A, 2017, 5, 7816-7824.	5.2	71
50	A Cd(II) metal–organic framework based on semi-rigid ligand 3,5-(4-carboxybenzyloxy) benzoic acid with high stability by intramolecular hydrogen-bonding. Inorganic Chemistry Communication, 2017, 80, 49-52.	1.8	11
51	Straightforward Loading of Imidazole Molecules into Metal–Organic Framework for High Proton Conduction. Journal of the American Chemical Society, 2017, 139, 15604-15607.	6.6	290
52	A Hierarchically Porous Metalâ€Organic Framework from Semirigid Ligand for Gas Adsorption. Chinese Journal of Chemistry, 2016, 34, 215-219.	2.6	17
53	High proton conductivity in an unprecedented anionic metalloring organic framework (MROF) containing novel metalloring clusters with the largest diameter. Journal of Materials Chemistry A, 2016, 4, 18742-18746.	5. 2	44
54	Microporous Metal–Organic Framework Stabilized by Balanced Multiple Host–Couteranion Hydrogen-Bonding Interactions for High-Density CO ₂ Capture at Ambient Conditions. Inorganic Chemistry, 2016, 55, 292-299.	1.9	82

YINGXIANG YE

#	Article	IF	CITATIONS
55	Metal–organic frameworks with a large breathing effect to host hydroxyl compounds for high anhydrous proton conductivity over a wide temperature range from subzero to 125 °C. Journal of Materials Chemistry A, 2016, 4, 4062-4070.	5.2	109
56	40-Fold Enhanced Intrinsic Proton Conductivity in Coordination Polymers with the Same Proton-Conducting Pathway by Tuning Metal Cation Nodes. Inorganic Chemistry, 2016, 55, 983-986.	1.9	68
57	High Anhydrous Proton Conductivity of Imidazole-Loaded Mesoporous Polyimides over a Wide Range from Subzero to Moderate Temperature. Journal of the American Chemical Society, 2015, 137, 913-918.	6.6	238
58	A 3D-diamond-like metal–organic framework: Crystal structure, nonlinear optical effect and high thermal stability. Inorganic Chemistry Communication, 2015, 60, 19-22.	1.8	12
59	Cobalt–citrate framework armored with graphene oxide exhibiting improved thermal stability and selectivity for biogas decarburization. Journal of Materials Chemistry A, 2015, 3, 593-599.	5.2	71