elilu1983x2% Gallardo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9078152/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Electrochemical Oxidation of Aliphatic Amines and Their Attachment to Carbon and Metal Surfaces. Langmuir, 2004, 20, 8243-8253.	3.5	408
2	Dissociative electron transfer. Homogeneous and heterogeneous reductive cleavage of the carbon-halogen bond in simple aliphatic halides. Journal of the American Chemical Society, 1986, 108, 638-647.	13.7	223
3	Spontaneous Attachment of Amines to Carbon and Metallic Surfaces. Journal of Physical Chemistry B, 2006, 110, 19521-19529.	2.6	135
4	Dissociative electron transfer. Ab initio study of the carbon-halogen bond reductive cleavage in methyl and perfluoromethyl halides. Role of the solvent. Journal of the American Chemical Society, 1992, 114, 9576-9583.	13.7	122
5	Outer-sphere electron-transfer reduction of alkyl halides. A source of alkyl radicals or of carbanions? Reduction of alkyl radicals. Journal of the American Chemical Society, 1989, 111, 1620-1626.	13.7	120
6	Anodic oxidation of some tertiary amines. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1991, 304, 241-247.	0.1	58
7	Electrostatic and Electrophilic Catalysis in the Reductive Cleavage of Alkyl Aryl Ethers. The Influence of Ion Pairing on the Regioselectivity. Journal of Organic Chemistry, 2000, 65, 322-331.	3.2	52
8	Nucleophilic Aromatic Substitution for Heteroatoms:Â An Oxidative Electrochemical Approach. Journal of Organic Chemistry, 2002, 67, 2548-2555.	3.2	50
9	Nucleophilic Aromatic Substitution of Hydrogen: A Novel Electrochemical Approach to the Cyanation of Nitroarenes. Chemistry - A European Journal, 2001, 7, 1759-1765.	3.3	42
10	Investigation of an Acid–Base and Redox Molecular Switch: From Bulk to the Single-Molecule Level. Chemistry - A European Journal, 2007, 13, 7066-7074.	3.3	39
11	A multi-stimuli responsive switch as a fluorescent molecular analogue of transistors. Chemical Science, 2016, 7, 1819-1825.	7.4	39
12	Evidence for a π Dimer in the Electrochemical Reduction of 1,3,5-Trinitrobenzene: A Reversible N2-Fixation System. Angewandte Chemie - International Edition, 2007, 46, 1321-1325.	13.8	36
13	Stable Spirocyclic Meisenheimer Complexes. Molecules, 2008, 13, 1282-1302.	3.8	36
14	Mechanistic studies on the reactivity of halodinitrobenzene radical-anion. Journal of Electroanalytical Chemistry, 2000, 488, 64-72.	3.8	30
15	Topologically Controlled Coulombic Interactions, a New Tool in the Developing of Novel Reactivity. Photochemical and Electrochemical Cleavage of Phenyl Alkyl Ethers. Journal of Organic Chemistry, 1995, 60, 3814-3825.	3.2	29
16	Electrochemically promoted nucleophilic aromatic substitution in room temperature ionic liquids—an environmentally benign way to functionalize nitroaromatic compounds. Green Chemistry, 2011, 13, 2531.	9.0	29
17	Thermodynamics, Kinetics, and Dynamics of the Two Alternative Aniomesolytic Fragmentations of Câ^'O Bonds:  An Electrochemical and Theoretical Study. Journal of the American Chemical Society, 2002, 124, 4708-4715.	13.7	28
18	Electrochemical Synthesis of Nitroanilines. European Journal of Organic Chemistry, 2002, 2002, 251-259.	2.4	28

#	Article	IF	CITATIONS
19	Inductive vs Solvation Effects in Primary Alkyl Amines:  Determination of the Standard Potentials. Journal of the American Chemical Society, 2007, 129, 2817-2821.	13.7	28
20	Electrochemical Synthesis of Organophosphorus Compounds through Nucleophilic Aromatic Substitution: Mechanistic Investigations and Synthetic Scope. European Journal of Organic Chemistry, 2011, 2011, 7378-7389.	2.4	27
21	Are Anion Radicals Nucleophiles and/or Outersphere Electron Donors? An Ab Initio Study of the Reaction of Ethylene and Formaldehyde Anion Radicals with Methyl Fluoride and Chloride. Journal of the American Chemical Society, 1996, 118, 5737-5744.	13.7	26
22	Direct coupling of nucleophiles with nitroaromatic compounds via fluoride-promoted oxidative nucleophilic aromatic substitution for hydrogen. Tetrahedron Letters, 2001, 42, 3439-3441.	1.4	26
23	Electrochemical Synthesis of Nitroaromatic Ketones. European Journal of Organic Chemistry, 2002, 2002, 261-267.	2.4	26
24	Understanding specific effects on the standard potential shifts of electrogenerated species in 1-butyl-3-methylimidazolium ionic liquids. Electrochimica Acta, 2008, 53, 5968-5976.	5.2	26
25	A biocompatible redox MRI probe based on a Mn(<scp>ii</scp>)/Mn(<scp>iii</scp>) porphyrin. Dalton Transactions, 2019, 48, 3249-3262.	3.3	24
26	Sustainable and efficient electrosynthesis of naproxen using carbon dioxide and ionic liquids. Chemosphere, 2020, 245, 125557.	8.2	24
27	Environmental risk index: A tool to assess the safety of dams for leachate. Journal of Hazardous Materials, 2009, 162, 1-9.	12.4	23
28	Mechanistic study of the electrochemical oxidation of some aromatic amines in the presence of bases. Journal of Electroanalytical Chemistry, 1993, 354, 231-241.	3.8	22
29	Alkylation of Nitroaromatics with Tetraalkylborate Ion via Electrochemical Oxidation. Journal of Organic Chemistry, 2003, 68, 7334-7341.	3.2	22
30	Electrochemical Synthesis of Alkyl Nitroaromatic Compounds. Journal of Organic Chemistry, 2003, 68, 631-633.	3.2	22
31	Electrochemical studies of CO ₂ in imidazolium ionic liquids using silver as a working electrode: a suitable approach for determining diffusion coefficients, solubility values, and electrocatalytic effects. RSC Advances, 2014, 4, 65176-65183.	3.6	22
32	Reductively activated "polar―nucleophilic aromatic substitution of pentafluoronitrobenzene. The SRN2 hypothesis revisited. Tetrahedron Letters, 1993, 34, 2801-2804.	1.4	19
33	Thermodynamics and kinetics of homolytic cleavage of carbon–oxygen bonds in radical anions obtained by electrochemical reduction of alkyl aryl ethers. Perkin Transactions II RSC, 2002, , 985-990.	1.1	18
34	Thermodynamic Study of σ ^H Complexes in Nucleophilic Aromatic Substitution Reactions: Relative Stabilities of Electrochemically Generated Radicals. European Journal of Organic Chemistry, 2008, 2008, 2463-2472.	2.4	17
35	Electrocarboxylation of halobenzonitriles: An environmentally friendly synthesis of phthalate derivatives. Electrochimica Acta, 2019, 320, 134576.	5.2	17
36	On the electroreduction mechanism of halobenzenes. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1987, 219, 197-208.	0.1	16

#	Article	IF	CITATIONS
37	Direct formation of aromatic C–N bonds. Regioselective amination of m-dinitrobenzene via fluoride promoted nucleophilic aromatic photosubstitution for hydrogen. Tetrahedron Letters, 2000, 41, 279-281.	1.4	16
38	Mechanistic studies on the electrochemical reductive coupling of some polyhalogenonitrobenzenes. A new example of a radical anion dimerization. Tetrahedron, 1994, 50, 6913-6920.	1.9	15
39	Electrochemical mechanism of spiro and zwitterionic Meisenheimer compounds: A potential fluorescence molecular switching system. Electrochemistry Communications, 2007, 9, 173-179.	4.7	15
40	The role of cations in the reduction of 9-fluorenone in bis(trifluoromethylsulfonyl)imide room temperature ionic liquids. New Journal of Chemistry, 2014, 38, 5030-5036.	2.8	15
41	Electrocatalytic Processes for the Valorization of CO2: Synthesis of Cyanobenzoic Acid Using Eco-Friendly Strategies. Catalysts, 2019, 9, 413.	3.5	15
42	Theoretical study of the oxidation mechanism of aromatic amines. Journal of the Chemical Society Perkin Transactions II, 1991, , 1437-1443.	0.9	13
43	Reductively activated 'polar' nucleophilic aromatic substitution. A new mechanism in aromatic chemistry?. Pure and Applied Chemistry, 1995, 67, 703-710.	1.9	12
44	Estimation of nitrobenzyl radicals reduction potential using spectro-electrochemical techniques. Electrochimica Acta, 2009, 54, 5098-5108.	5.2	12
45	Singlet-triplet mechanistic duality in the photosubstitution of nitrophenyl ethers with ethyl glycinate. The role of single electron transfer Tetrahedron, 1992, 48, 1333-1342.	1.9	11
46	Electrosynthesis of Hindered Alkyl Diamines: Evidence for an Electrocatalytic Anodic Mechanism. Journal of Organic Chemistry, 2008, 73, 6647-6656.	3.2	10
47	Cyclic voltammetry using silver as cathode material: a simple method for determining electro and chemical features and solubility values of CO ₂ in ionic liquids. Physical Chemistry Chemical Physics, 2015, 17, 2339-2343.	2.8	10
48	Electrochemical Reduction of 4â€Nitrobenzyl Phenyl Thioether for Activation and Capture of CO ₂ . ChemElectroChem, 2021, 8, 2649-2661.	3.4	10
49	Electronic reduction of haloaromatic compounds. A theoretical study. Journal of the Chemical Society Perkin Transactions II, 1989, , 2017-2021.	0.9	9
50	Environmentally benign and selective synthesis of hybrid pyrazole sulfoxide and sulfone ligands. New Journal of Chemistry, 2013, 37, 1889.	2.8	9
51	Cathodically activated nucleophilic aromatic substitution of hydrogen: a novel electrochemical mechanismElectronic supplementary information (ESI) available: Table S1. See http://www.rsc.org/suppdata/cc/b2/b207168a/. Chemical Communications, 2002, , 2638-2639.	4.1	8
52	Reductively activated "Polar―nucleophilic aromatic substitution. II. The reaction of p-dinitrobenzene and p-nitrobenzonitrile with charged and neutral nucleophiles. Tetrahedron Letters, 1994, 35, 9055-9058.	1.4	7
53	The effect of topologically controlled coulombic interactions on the regioselectivity of the reductive cleavage of alkyl phenyl ethers. Journal of the Chemical Society Perkin Transactions II, 1996, , 2563.	0.9	7
54	Evidence for a Transition Between Singlet and Triplet States in the Electrochemical Reduction of 2,2′-4,4′-Tetranitrobiphenyl. ChemPhysChem, 2001, 2, 754.	2.1	7

ELILU1983X2% GALLARDO

#	Article	IF	CITATIONS
55	Electrochemically triggered conversion between metacyclophan-1-ene and dihydropyrene molecular switching systems. Physical Chemistry Chemical Physics, 2009, 11, 1502.	2.8	7
56	Thermal and Optical Characterization of Undoped and Neodymium-Doped Y ₃ ScAl ₄ O ₁₂ Ceramics. Journal of Physical Chemistry C, 2014, 118, 13781-13789.	3.1	7
57	Electrochemically promoted arylation of iodoaromatics. Journal of Electroanalytical Chemistry, 2017, 799, 9-16.	3.8	7
58	New smart functional fluorophores based on stable spirocyclic zwitterionic Meisenheimer compounds. Dyes and Pigments, 2018, 153, 160-171.	3.7	7
59	Bidirectional Redox Molecular Switches: Electronâ€induced Cyclization and Cycloreversion Processes in Metacyclophanes. Chemistry - A European Journal, 2012, 18, 9807-9812.	3.3	6
60	Electrochemical tools to disclose the electrochemical reduction mechanism of CO2 in aprotic solvents and ionic liquids. Journal of Electroanalytical Chemistry, 2021, 895, 115411.	3.8	6
61	One-Pot Electrosynthesis of Substituted Imidazolinium and Tetrahydropyrimidinium Salts from Secondary Alkyldiamines: An Electrochemical Route toward Ionic Liquids. Journal of Organic Chemistry, 2010, 75, 680-689.	3.2	5
62	Side reactions in macroscale electrolysis of halobenzenes in DMF at a mercury cathode. Electrochimica Acta, 1987, 32, 1145-1147.	5.2	4
63	An Analysis of Anionâ€Specific Effects on the Standard Potential Shifts of 9â€Fluorenone in Roomâ€Temperature Ionic Liquids with a Silver Electrode as a Cathode Material. ChemElectroChem, 2014, 1, 2104-2109.	3.4	4
64	Reductively activated "Polar―nucleophilic aromatic substitution. III. Tetrahedron Letters, 1994, 35, 9059-9062.	1.4	3
65	Reduction of Aromatic Imino Derivatives: Chemical, Electrochemical, and Theoretical Studies. Polycyclic Aromatic Compounds, 2003, 23, 457-470.	2.6	3
66	Oxygen carriers based on electrochemically reduced trinitroarenes. Physical Chemistry Chemical Physics, 2008, 10, 4456.	2.8	3
67	Combining Nanosecond and Millisecond Time Scale Techniques: Determination of Thermodynamic and Kinetic data of Primary Alkyl Amine Cation Radicals. Journal of Physical Chemistry A, 2015, 119, 620-633.	2.5	2
68	From 4-nitrotoluene and 4,4′-dinitrobibenzyl to <i>E</i> -4,4′-dinitrostilbene: an electrochemical approach. New Journal of Chemistry, 2018, 42, 7005-7015.	2.8	2
69	On the electroreduction mechanism of halobenzenes: Detection of intermediates in reduction of monohalobenzenes. Collection of Czechoslovak Chemical Communications, 1989, 54, 900-910.	1.0	2
70	On the electroreduction mechanism of halobenzenes: The special case of 1,2-dibromobenzene. Collection of Czechoslovak Chemical Communications, 1989, 54, 911-921.	1.0	2
71	Electrochemical C–H Functionalization of Arenes and Heteroarenes. Topics in Heterocyclic Chemistry, 2013, , 241-275.	0.2	1
72	ELECTROCARBOXYLATION OF SPYROPIRAN SWITCHES THROUGH CARBONâ€BROMIDE BOND CLEAVAGE REACTION. ChemElectroChem, 0, , .	3.4	1

#	Article	IF	CITATIONS
73	Electrochemical Synthesis of Alkyl Nitroaromatic Compounds ChemInform, 2003, 34, no.	0.0	0
74	Tuning the absorption and emission of CdSe and ZnS core-shell nanoparticles by laser radiation. , 2008, , .		0

6