Van Duong Ta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9077791/publications.pdf Version: 2024-02-01

ΜΑΝ ΠΗΟΝΟ ΤΑ

#	Article	IF	CITATIONS
1	Nanosecond laser textured superhydrophobic metallic surfaces and their chemical sensing applications. Applied Surface Science, 2015, 357, 248-254.	6.1	298
2	Laser textured superhydrophobic surfaces and their applications for homogeneous spot deposition. Applied Surface Science, 2016, 365, 153-159.	6.1	236
3	Stimulated Emission and Lasing from CdSe/CdS/ZnS Coreâ€Multiâ€Shell Quantum Dots by Simultaneous Threeâ€Photon Absorption. Advanced Materials, 2014, 26, 2954-2961.	21.0	172
4	Blue Liquid Lasers from Solution of CdZnS/ZnS Ternary Alloy Quantum Dots with Quasi ontinuous Pumping. Advanced Materials, 2015, 27, 169-175.	21.0	127
5	Tuning Whispering Gallery Mode Lasing from Self-Assembled Polymer Droplets. Scientific Reports, 2013, 3, 1362.	3.3	116
6	Whispering gallery mode microlasers and refractive index sensing based on single polymer fiber. Laser and Photonics Reviews, 2013, 7, 133-139.	8.7	111
7	Exciton Localization and Optical Properties Improvement in Nanocrystal-Embedded ZnO Core–Shell Nanowires. Nano Letters, 2013, 13, 734-739.	9.1	85
8	Laser textured surface gradients. Applied Surface Science, 2016, 371, 583-589.	6.1	83
9	Robust Whispering-Gallery-Mode Microbubble Lasers from Colloidal Quantum Dots. Nano Letters, 2017, 17, 2640-2646.	9.1	83
10	Bending-Induced Bidirectional Tuning of Whispering Gallery Mode Lasing from Flexible Polymer Fibers. ACS Photonics, 2014, 1, 11-16.	6.6	79
11	Selfâ€Assembled Flexible Microlasers. Advanced Materials, 2012, 24, OP60-4.	21.0	76
12	Multicolor Hybrid Upconversion Nanoparticles and Their Improved Performance as Luminescence Temperature Sensors Due to Energy Transfer. Small, 2013, 9, 1052-1057.	10.0	75
13	Coupled Polymer Microfiber Lasers for Single Mode Operation and Enhanced Refractive Index Sensing. Advanced Optical Materials, 2014, 2, 220-225.	7.3	75
14	Single Mode Lasing from Hybrid Hemispherical Microresonators. Scientific Reports, 2012, 2, 244.	3.3	63
15	Multicolor lasing prints. Applied Physics Letters, 2015, 107, .	3.3	47
16	Unraveling the ultralow threshold stimulated emission from CdZnS/ZnS quantum dot and enabling highâ€Q microlasers. Laser and Photonics Reviews, 2015, 9, 507-516.	8.7	44
17	Application of self-assembled hemispherical microlasers as gas sensors. Applied Physics Letters, 2013, 102, .	3.3	43
18	Hybrid additive manufacturing of 3D electronic systems. Journal of Micromechanics and Microengineering, 2016, 26, 105005.	2.6	41

Van Duong Ta

#	Article	IF	CITATIONS
19	Dynamically controlled deposition of colloidal nanoparticle suspension in evaporating drops using laser radiation. Soft Matter, 2016, 12, 4530-4536.	2.7	32
20	Microsphere Solidâ \in State Biolasers. Advanced Optical Materials, 2017, 5, 1601022.	7.3	31
21	Reconfigurable Liquid Whispering Gallery Mode Microlasers. Scientific Reports, 2016, 6, 27200.	3.3	29
22	Microlasers Enabled by Softâ€Matter Technology. Advanced Optical Materials, 2019, 7, 1900057.	7.3	29
23	Ultralowâ€Threshold and Highâ€Quality Whisperingâ€Galleryâ€Mode Lasing from Colloidal Core/Hybridâ€Shell Quantum Wells. Advanced Materials, 2022, 34, e2108884.	21.0	28
24	Observation of polarized gain from aligned colloidal nanorods. Nanoscale, 2015, 7, 6481-6486.	5.6	24
25	Integration of additive manufacturing and inkjet printed electronics: a potential route to parts with embedded multifunctionality. Manufacturing Review, 2016, 3, 12.	1.5	24
26	Protein-based microsphere biolasers fabricated by dehydration. Soft Matter, 2019, 15, 9721-9726.	2.7	20
27	Wide-range coupling between surface plasmon polariton and cylindrical dielectric waveguide mode. Optics Express, 2011, 19, 13598.	3.4	18
28	Chicken albumen-based whispering gallery mode microlasers. Soft Matter, 2020, 16, 9069-9073.	2.7	16
29	Flexible and tensile microporous polymer fibers for wavelength-tunable random lasing. Nanoscale, 2020, 12, 12357-12363.	5.6	15
30	Silica based biocompatible random lasers implantable in the skin. Optics Communications, 2020, 475, 126207.	2.1	12
31	Controllable Polarization of Lasing Emission From a Polymer Microfiber Laser. Scientific Reports, 2019, 9, 17017.	3.3	10
32	Biocompatible microlasers based on polyvinyl alcohol microspheres. Optics Communications, 2020, 459, 124925.	2.1	9
33	Biocompatible Polymer and Protein Microspheres with Inverse Photonic Glass Structure for Random Microâ€Biolasers. Advanced Photonics Research, 2021, 2, 2100036.	3.6	8
34	Egg white based biological microlasers. Journal Physics D: Applied Physics, 2020, 53, 445104.	2.8	6
35	High-quality factor, biological microsphere and microhemisphere lasers fabricated by a single solution process. Optics Communications, 2020, 465, 125647.	2.1	6
36	Enabling Rapid Production and Mass Customisation of Electronics Using Digitally Driven Hybrid Additive Manufacturing Techniques. , 2016, , .		5

Van Duong Ta

#	Article	IF	CITATIONS
37	Lasers: Coupled Polymer Microfiber Lasers for Single Mode Operation and Enhanced Refractive Index Sensing (Advanced Optical Materials 3/2014). Advanced Optical Materials, 2014, 2, 200-200.	7.3	4
38	Monodisperse and size-tunable high-quality factor microsphere biolasers. Optics Letters, 2021, 46, 2517.	3.3	3
39	Micro electronic systems via multifunctional additive manufacturing. Rapid Prototyping Journal, 2018, 24, 752-763.	3.2	2
40	High quality factor, protein-based microlasers from self-assembled microcracks. Journal Physics D: Applied Physics, 2021, 54, 255108.	2.8	2
41	Flexible microresonators: lasing and sensing. , 2014, , .		1
42	Quantum Dots: Blue Liquid Lasers from Solution of CdZnS/ZnS Ternary Alloy Quantum Dots with Quasi-Continuous Pumping (Adv. Mater. 1/2015). Advanced Materials, 2015, 27, 168-168.	21.0	1
43	Biolasers: Microsphere Solid‣tate Biolasers (Advanced Optical Materials 8/2017). Advanced Optical Materials, 2017, 5, .	7.3	1
44	Characteristics of Dye-doped Silica Nanoparticles- Based Random Lasers in the Air and Water. Communications in Physics, 2022, 32, 1.	0.0	1
45	Coherent Random lasing from CdSe/CdS/ZnS quantum dots. , 2013, , .		1
46	Ultralowâ€Threshold and Highâ€Quality Whisperingâ€Galleryâ€Mode Lasing from Colloidal Core/Hybrid‧hell Quantum Wells (Adv. Mater. 13/2022). Advanced Materials, 2022, 34, .	21.0	1
47	Random lasers from the natural inverse photonic glass structure of Artemia eggshells. Journal Physics D: Applied Physics, 2022, 55, 295104.	2.8	1
48	Flexible optical microcavities and their sensing application. , 2013, , .		0
49	Anisotropic stimulated emission from aligned CdSe/CdS dot-in-rods. , 2014, , .		0
50	Multi-photon Excited Amplified Spontaneous Emission and Lasing from CdSe/CdS/ZnS quantum dots. , 2014, , .		0
51	Biocompatible Polymer and Protein Microspheres with Inverse Photonic Glass Structure for Random Microâ€Biolasers. Advanced Photonics Research, 2021, 2, 2170025.	3.6	0
52	Microlaser from Self-Assembled Hemispherical Resonator. , 2012, , .		0
53	Lasing From Flexible Microcavities and Their Applications. , 2013, , .		0