Maciej Figiel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9077673/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	From psychiatry to neurology: Psychedelics as prospective therapeutics for neurodegenerative disorders. Journal of Neurochemistry, 2022, 162, 89-108.	2.1	27
2	A CAG repeat-targeting artificial miRNA lowers the mutant huntingtin level in the YAC128 model of Huntington's disease. Molecular Therapy - Nucleic Acids, 2022, 28, 702-715.	2.3	4
3	Broad Influence of Mutant Ataxin-3 on the Proteome of the Adult Brain, Young Neurons, and Axons Reveals Central Molecular Processes and Biomarkers in SCA3/MJD Using Knock-In Mouse Model. Frontiers in Molecular Neuroscience, 2021, 14, 658339.	1.4	8
4	Juvenile Huntington's Disease and Other PolyQ Diseases, Update on Neurodevelopmental Character and Comparative Bioinformatic Review of Transcriptomic and Proteomic Data. Frontiers in Cell and Developmental Biology, 2021, 9, 642773.	1.8	8
5	B03â€Novel hd mouse models enabling new pathogenic mechanisms discovery. , 2021, , .		0
6	I02â€A CAG repeat-targeting artificial miRNA lowers the mutant huntingtin level in the YAC128 model of huntington's disease. , 2021, , .		0
7	Altered Levels of Proteins and Phosphoproteins, in the Absence of Early Causative Transcriptional Changes, Shape the Molecular Pathogenesis in the Brain of Young Presymptomatic Ki91 SCA3/MJD Mouse. Molecular Neurobiology, 2019, 56, 8168-8202.	1.9	15
8	Huntington Disease as a Neurodevelopmental Disorder and Early Signs of the Disease in Stem Cells. Molecular Neurobiology, 2018, 55, 3351-3371.	1.9	85
9	A08â€Early transcriptional changes in human HD-IPS cell lines revealed by RNASEQ. , 2018, , .		0
10	Identification of Altered Developmental Pathways in Human Juvenile HD iPSC With 71Q and 109Q Using Transcriptome Profiling. Frontiers in Cellular Neuroscience, 2018, 12, 528.	1.8	28
11	The Generation of Mouse and Human Huntington Disease iPS Cells Suitable for In vitro Studies on Huntingtin Function. Frontiers in Molecular Neuroscience, 2017, 10, 253.	1.4	30
12	Mouse polyQ database: a new online resource for research using mouse models of neurodegenerative diseases. Molecular Brain, 2015, 8, 69.	1.3	7
13	Mouse Models of SCA3 and Other Polyglutamine Repeat Ataxias. , 2015, , 991-1016.		1
14	Huntington disease iPSCs show early molecular changes in intracellular signaling, the expression of oxidative stress proteins and the p53 pathway. DMM Disease Models and Mechanisms, 2015, 8, 1047-57.	1.2	58
15	A new humanized ataxin-3 knock-in mouse model combines the genetic features, pathogenesis of neurons and glia and late disease onset of SCA3/MJD. Neurobiology of Disease, 2015, 73, 174-188.	2.1	62
16	A novel crossâ€ŧalk between endothelin and ErbB receptors controlling glutamate transporter expression in astrocytes. Journal of Neurochemistry, 2012, 122, 844-855.	2.1	3
17	Mouse Models of Polyglutamine Diseases: Review and Data Table. Part I. Molecular Neurobiology, 2012, 46, 393-429.	1.9	50
18	Mouse Models of Polyglutamine Diseases in Therapeutic Approaches: Review and Data Table. Part II. Molecular Neurobiology, 2012, 46, 430-466.	1.9	39

Maciej Figiel

#	Article	IF	CITATIONS
19	Mouse Ataxin-3 Functional Knock-Out Model. NeuroMolecular Medicine, 2011, 13, 54-65.	1.8	46
20	Comparative structural and functional analysis of the GLTâ€1/EAATâ€2 promoter from man and rat. Journal of Neuroscience Research, 2010, 88, 1234-1241.	1.3	22
21	Endothelin-1 reverses the histone deacetylase inhibitor-induced increase in glial glutamate transporter transcription without affecting histone acetylation levels. Neurochemistry International, 2009, 55, 22-27.	1.9	14
22	Gap junctional control of glial glutamate transporter expression. Molecular and Cellular Neurosciences, 2007, 35, 130-137.	1.0	44
23	Chronic endothelin exposure inhibits connexin43 expression in cultured cortical astroglia. Journal of Neuroscience Research, 2005, 79, 303-309.	1.3	13
24	Angiopoietin-1 promotes neurite outgrowth from dorsal root ganglion cells positive for Tie-2 receptor. Cell and Tissue Research, 2005, 320, 11-19.	1.5	50
25	Differential Promotion of Glutamate Transporter Expression and Function by Glucocorticoids in Astrocytes from Various Brain Regions. Journal of Biological Chemistry, 2005, 280, 34924-34932.	1.6	119
26	Endothelins Negatively Regulate Glial Glutamate Transporter Expression. Brain Pathology, 2004, 14, 406-414.	2.1	43
27	Regulation of glial glutamate transporter expression by growth factors. Experimental Neurology, 2003, 183, 124-135.	2.0	119
28	CNS region-specific regulation of glial glutamate transporter expression. European Journal of Neuroscience, 2002, 16, 836-842.	1.2	68
29	Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP), a Neuron-Derived Peptide Regulating Glial Glutamate Transport and Metabolism. Journal of Neuroscience, 2000, 20, 3596-3605.	1.7	153
30	CNS glia are targets for GDNF and neurturin. Histochemistry and Cell Biology, 1998, 110, 595-601.	0.8	39