Simon C Pitchford

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9077463/publications.pdf

Version: 2024-02-01

55 2,610 25
papers citations h-index

55 55 3811 all docs docs citations times ranked citing authors

45

g-index

#	Article	IF	CITATIONS
1	Cellular and molecular mechanisms of IMMunE dysfunction and Recovery from SEpsis-related critical illness in adults: An observational cohort study (IMMERSE) protocol paper. Journal of the Intensive Care Society, 2022, 23, 318-324.	1.1	5
2	Platelets Independently Recruit into Asthmatic Lungs and Models of Allergic Inflammation via CCR3. American Journal of Respiratory Cell and Molecular Biology, 2021, 64, 557-568.	1.4	18
3	The GPCR adaptor protein norbin suppresses the neutrophil-mediated immunity of mice to pneumococcal infection. Blood Advances, 2021, 5, 3076-3091.	2.5	8
4	Red Blood Cells Elicit Platelet-Dependent Neutrophil Recruitment Into Lung Airspaces. Shock, 2021, 56, 278-286.	1.0	4
5	A pleurocidin analogue with greater conformational flexibility, enhanced antimicrobial potency and in vivo therapeutic efficacy. Communications Biology, 2020, 3, 697.	2.0	14
6	Heparin and non-anticoagulant heparin attenuate histone-induced inflammatory responses in whole blood. PLoS ONE, 2020, 15, e0233644.	1.1	37
7	Animal models of mechanisms of <scp>SARSâ€CoVâ€2</scp> infection and <scp>COVIDâ€19</scp> pathology. British Journal of Pharmacology, 2020, 177, 4851-4865.	2.7	158
8	Title is missing!. , 2020, 15, e0233644.		0
9	Title is missing!. , 2020, 15, e0233644.		O
10	Title is missing!. , 2020, 15, e0233644.		0
11	Title is missing!. , 2020, 15, e0233644.		0
12	Editorial overview: Emerging anti-inflammatory approaches for the treatment of respiratory diseases. Current Opinion in Pharmacology, 2019, 46, iii-v.	1.7	0
13	Pharmacological strategies for targeting platelet activation in asthma. Current Opinion in Pharmacology, 2019, 46, 55-64.	1.7	22
14	LPS-induced Lung Platelet Recruitment Occurs Independently from Neutrophils, PSGL-1, and P-Selectin. American Journal of Respiratory Cell and Molecular Biology, 2019, 61, 232-243.	1.4	38
15	Sensory nerves mediate spontaneous behaviors in addition to inflammation in a murine model of psoriasis. FASEB Journal, 2019, 33, 1578-1594.	0.2	31
16	Platelets Play a Central Role in Sensitization to Allergen. American Journal of Respiratory Cell and Molecular Biology, 2018, 59, 96-103.	1.4	14
17	Diverse signalling of the platelet P2Y1 receptor leads to a dichotomy in platelet function. European Journal of Pharmacology, 2018, 827, 58-70.	1.7	19
18	Platelet Depletion Impairs Host Defense to Pulmonary Infection with <i>Pseudomonas aeruginosa</i> in Mice. American Journal of Respiratory Cell and Molecular Biology, 2018, 58, 331-340.	1.4	55

#	Article	IF	Citations
19	A dichotomy in platelet activation: Evidence of different functional platelet responses to inflammatory versus haemostatic stimuli. Thrombosis Research, 2018, 172, 110-118.	0.8	18
20	Platelets and Airway Diseases. , 2017, , 1149-1168.		4
21	Platelets in neutrophil recruitment to sites of inflammation. Current Opinion in Hematology, 2017, 24, 23-31.	1.2	44
22	Platelet–Eosinophil Interactions As a Potential Therapeutic Target in Allergic Inflammation and Asthma. Frontiers in Medicine, 2017, 4, 129.	1.2	36
23	A Non-Anticoagulant Fraction of Heparin Inhibits Leukocyte Diapedesis into the Lung by an Effect on Platelets. American Journal of Respiratory Cell and Molecular Biology, 2016, 55, 554-563.	1.4	20
24	Base-modified UDP-sugars reduce cell surface levels of P-selectin glycoprotein 1 (PSGL-1) on IL- $1\hat{l}^2$ -stimulated human monocytes. Glycobiology, 2016, 26, 1059-1071.	1.3	13
25	P-Rex and Vav Rac-GEFs in platelets control leukocyte recruitment to sites of inflammation. Blood, 2015, 125, 1146-1158.	0.6	76
26	The stop clock of platelet activation. Blood, 2015, 126, 2538-2539.	0.6	0
27	Role of platelets in allergic airway inflammation. Journal of Allergy and Clinical Immunology, 2015, 135, 1416-1423.	1.5	66
28	RhoA signaling through platelet P2Y1 receptor controls leukocyte recruitment in allergic mice. Journal of Allergy and Clinical Immunology, 2015, 135, 528-538.e4.	1.5	60
29	Interactions of stealth conjugated polymer nanoparticles with human whole blood. Journal of Materials Chemistry B, 2015, 3, 2463-2471.	2.9	19
30	Induction and enhancement of platelet aggregation <i>in vitro</i> and <i>in vivo</i> by model polystyrene nanoparticles. Nanotoxicology, 2015, 9, 356-364.	1.6	37
31	Neutrophil and platelet complexes and their relevance to neutrophil recruitment and activation. International Immunopharmacology, 2013, 17, 1176-1184.	1.7	106
32	Platelets Coming of Age. American Journal of Respiratory and Critical Care Medicine, 2013, 187, 459-460.	2.5	8
33	VEGFR1 stimulates a CXCR4-dependent translocation of megakaryocytes to the vascular niche, enhancing platelet production in mice. Blood, 2012, 120, 2787-2795.	0.6	58
34	Pharmacological Modulation of the Inflammatory Actions of Platelets. Handbook of Experimental Pharmacology, 2012, , 447-468.	0.9	10
35	Combinatorial Stem Cell Mobilization in Animal Models. Methods in Molecular Biology, 2012, 904, 139-154.	0.4	2
36	Development of new drugs for the treatment of respiratory diseases: from concept to the clinic. Journal of Drug Delivery Science and Technology, 2011, 21, 347-352.	1.4	2

#	Article	IF	Citations
37	Deficiency of bone marrow $\hat{1}^23\hat{a}$ integrin enhances non \hat{a} functional neovascularization. Journal of Pathology, 2010, 220, 435-445.	2.1	16
38	Troubleshooting: Quantification of mobilization of progenitor cell subsets from bone marrow in vivo. Journal of Pharmacological and Toxicological Methods, 2010, 61, 113-121.	0.3	18
39	Circulating platelet-neutrophil complexes are important for subsequent neutrophil activation and migration. Journal of Applied Physiology, 2010, 109, 758-767.	1.2	136
40	Asthma: what's the bleeding point?. Thorax, 2009, 64, 1014-1015.	2.7	2
41	CXCR2 Mediates the Recruitment of Endothelial Progenitor Cells During Allergic Airways Remodeling. Stem Cells, 2009, 27, 3074-3081.	1.4	53
42	Differential Mobilization of Subsets of Progenitor Cells from the Bone Marrow. Cell Stem Cell, 2009, 4, 62-72.	5.2	264
43	A role for MC3R in modulating lung inflammation. Pulmonary Pharmacology and Therapeutics, 2008, 21, 866-873.	1.1	58
44	Real-time measurement of non-lethal platelet thromboembolic responses in the anaesthetized mouse. Thrombosis and Haemostasis, 2008, 99, 435-440.	1.8	42
45	Increased Expression of CCL2 in Insulin-Producing Cells of Transgenic Mice Promotes Mobilization of Myeloid Cells From the Bone Marrow, Marked Insulitis, and Diabetes. Diabetes, 2008, 57, 3025-3033.	0.3	102
46	Allergen Induces the Migration of Platelets to Lung Tissue in Allergic Asthma. American Journal of Respiratory and Critical Care Medicine, 2008, 177, 604-612.	2.5	147
47	The coordinated action of G-CSF and ELR + CXC chemokines in neutrophil mobilization during acute inflammation. Blood, 2008, 111, 42-49.	0.6	196
48	Nitroaspirin plus clopidogrel versus aspirin plus clopidogrel against platelet thromboembolism and intimal thickening in mice. Thrombosis and Haemostasis, 2005, 93, 535-543.	1.8	40
49	Platelet P-selectin is required for pulmonary eosinophil and lymphocyte recruitment in a murine model of allergic inflammation. Blood, 2005, 105, 2074-2081.	0.6	190
50	Platelets are necessary for airway wall remodeling in a murine model of chronic allergic inflammation. Blood, 2004, 103, 639-647.	0.6	135
51	Extracellular matrix composition influences the resistance of airway remodelling events towards glucocorticoid treatment. British Journal of Pharmacology, 2003, 138, 1181-1182.	2.7	5
52	Platelets are essential for leukocyte recruitment in allergic inflammation. Journal of Allergy and Clinical Immunology, 2003, 112, 109-118.	1.5	197
53	Platelets and allergic diseases. , 2002, , 852-868.		7
54	Platelets in respiratory disorders and inflammatory conditions. , 2001, , 323-340.		O

SIMON C PITCHFORD

#	ŧ	Article	IF	CITATIONS
5	5	Characterizing RAPIDTM platelet and leukocyte-rich plasma gels – an autologous, point-of-care medicine for diabetic foot ulcer treatment British Journal of Pharmacy, 0, , .	0.1	0