Atsuro Miyata

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9076654/publications.pdf

Version: 2024-02-01

361045 189595 4,703 48 20 50 citations h-index g-index papers 51 51 51 2148 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Isolation of a novel 38 residue-hypothalamic polypeptide which stimulates adenylate cyclase in pituitary cells. Biochemical and Biophysical Research Communications, 1989, 164, 567-574.	1.0	1,777
2	Isolation of a neuropeptide corresponding to the N-terminal 27 residues of the pituitary adenylate cyclase activating polypeptide with 38 residues (PACAP38). Biochemical and Biophysical Research Communications, 1990, 170, 643-648.	1.0	898
3	Tissue Distribution of PACAP as Determined by RIA: Highly Abundant in the Rat Brain and Testes. Endocrinology, 1991, 129, 2787-2789.	1.4	604
4	Characterization and Distribution of Binding Sites for the Hypothalamic Peptide, Pituitary Adenylate Cyclase-Activating Polypeptide*. Endocrinology, 1990, 127, 272-277.	1.4	311
5	A novel peptide which stimulates adenylate cyclase: Molecular cloning and characterization of the ovine and human cDNAs. Biochemical and Biophysical Research Communications, 1990, 166, 81-89.	1.0	299
6	Primary Structure and Characterization of the Precursor to Human Pituitary Adenylate Cyclase Activating Polypeptide. DNA and Cell Biology, 1992, 11, 21-30.	0.9	93
7	N-arachidonoyl glycine induces macrophage apoptosis via GPR18. Biochemical and Biophysical Research Communications, 2012, 418, 366-371.	1.0	60
8	Characterization of the Human Gene (TBXAS1) Encoding Thromboxane Synthase. FEBS Journal, 1994, 224, 273-279.	0.2	52
9	C-Type Natriuretic Peptide Modulates Permeability of the Blood–Brain Barrier. Journal of Cerebral Blood Flow and Metabolism, 2014, 34, 589-596.	2.4	41
10	Attenuation of Inflammatory and Neuropathic Pain Behaviors in Mice through Activation of Free Fatty Acid Receptor GPR40. Molecular Pain, 2015, 11, s12990-015-0003.	1.0	39
11	Differential Intracellular Signaling through PAC1 Isoforms as a Result of Alternative Splicing in the First Extracellular Domain and the Third Intracellular Loop. Molecular Pharmacology, 2007, 72, 103-111.	1.0	36
12	Development and pharmacological verification of a new mouse model of central post-stroke pain. Neuroscience Research, 2014, 78, 72-80.	1.0	30
13	The effect of pituitary adenylate cyclase activating polypeptide on cultured rat cardiocytes as a cardioprotective factor. Regulatory Peptides, 2002, 109, 107-113.	1.9	28
14	Dysfunctional GPR40/FFAR1 signaling exacerbates pain behavior in mice. PLoS ONE, 2017, 12, e0180610.	1.1	26
15	Potential involvement of the mitochondrial unfolded protein response in depressive-like symptoms in mice. Neuroscience Letters, 2015, 588, 166-171.	1.0	25
16	In Silico Screening Identified Novel Small-molecule Antagonists of PAC1 Receptor. Journal of Pharmacology and Experimental Therapeutics, 2018, 365, 1-8.	1.3	25
17	Diverse effects of intrathecal pituitary adenylate cyclase-activating polypeptide on nociceptive transmission in mice spinal cord. Regulatory Peptides, 2004, 123, 117-122.	1.9	22
18	Spinal astrocytic activation contributes to both induction and maintenance of pituitary adenylate cyclase-activating polypeptide type 1 receptor-induced long-lasting mechanical allodynia in mice. Molecular Pain, 2016, 12, 174480691664638.	1.0	22

#	Article	IF	CITATIONS
19	Role of Mitochondrial Activation in PACAP Dependent Neurite Outgrowth. Journal of Molecular Neuroscience, 2012, 48, 550-557.	1.1	21
20	GPR40/FFAR1 deficient mice increase noradrenaline levels in the brain and exhibit abnormal behavior. Journal of Pharmacological Sciences, 2016, 132, 249-254.	1.1	21
21	Rat Aortic Smooth-Muscle Cell Proliferation Is Bidirectionally Regulated in a Cell Cycle-Dependent Manner via PACAP/VIP Type 2 Receptora. Annals of the New York Academy of Sciences, 1998, 865, 73-81.	1.8	20
22	Pituitary adenylate cyclase-activating polypeptide type 1 receptor signaling evokes long-lasting nociceptive behaviors through the activation of spinal astrocytes in mice. Journal of Pharmacological Sciences, 2016, 130, 194-203.	1.1	20
23	The augmentation of pituitary adenylate cyclase-activating polypeptide (PACAP) in streptozotocin-induced diabetic rats. Peptides, 1998, 19, 1497-1502.	1.2	17
24	Alleviation of Behavioral Hypersensitivity in Mouse Models of Inflammatory Pain with Two Structurally Different Casein Kinase 1 (CK1) Inhibitors. Molecular Pain, 2014, 10, 1744-8069-10-17.	1.0	17
25	Pituitary Adenylate Cyclase-Activating Polypeptide in the Ventromedial Hypothalamus Is Responsible for Food Intake Behavior by Modulating the Expression of Agouti-Related Peptide in Mice. Molecular Neurobiology, 2020, 57, 2101-2114.	1.9	17
26	Autocrine effects of neuromedin B stimulate the proliferation of rat primary osteoblasts. Journal of Endocrinology, 2013, 217, 141-150.	1.2	16
27	Alternative Splicing of the Pituitary Adenylate Cyclase-activating Polypetide (PACAP) Receptor Contributes to Function of PACAP-27. Journal of Molecular Neuroscience, 2010, 42, 341-348.	1.1	15
28	Pituitary Adenylate Cyclase-activating Polypeptide Type 1 Receptor (PAC1) Gene Is Suppressed by Transglutaminase 2 Activation. Journal of Biological Chemistry, 2013, 288, 32720-32730.	1.6	14
29	The Deletion of GPR40/FFAR1 Signaling Damages Maternal Care and Emotional Function in Female Mice. Biological and Pharmaceutical Bulletin, 2017, 40, 1255-1259.	0.6	13
30	Synthesis of a novel and potent small-molecule antagonist of PAC1 receptor for the treatment of neuropathic pain. European Journal of Medicinal Chemistry, 2020, 186, 111902.	2.6	12
31	Implication of Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) for Neuroprotection of Nicotinic Acetylcholine Receptor Signaling in PC12 Cells. Journal of Molecular Neuroscience, 2008, 36, 73-78.	1.1	11
32	Characterization of the testisâ€specific promoter region in the human pituitary adenylate cyclaseâ€activating polypeptide (PACAP) gene. Genes To Cells, 2010, 15, 595-606.	0.5	11
33	The novel small-molecule antagonist of PAC1 receptor attenuates formalin-induced inflammatory pain behaviors in mice. Journal of Pharmacological Sciences, 2019, 139, 129-132.	1.1	11
34	Neural-restrictive silencers in the regulatory mechanism of pituitary adenylate cyclase-activating polypeptide gene expression. Regulatory Peptides, 2004, 123, 9-14.	1.9	10
35	Characterization of the PAC1 Variants Expressed in the Mouse Heart. Annals of the New York Academy of Sciences, 2006, 1070, 586-590.	1.8	9
36	Genomic Organization and Chromosomal Localization of the Mouse Pituitary Adenylate Cyclase Activating Polypeptide (PACAP) Gene. Annals of the New York Academy of Sciences, 2000, 921, 344-348.	1.8	8

3

#	Article	IF	CITATIONS
37	Regulatory mechanism of PAC1 gene expression via Sp1 by nerve growth factor in PC12 cells. FEBS Letters, 2012, 586, 1731-1735.	1.3	7
38	Neuromedin B stimulates proliferation of mouse chondrogenic cell line ATDC5. Peptides, 2012, 36, 299-302.	1.2	6
39	Functional Characterization of Neural-Restrictive Silencer Element in Mouse Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) Gene Expression. Journal of Molecular Neuroscience, 2014, 54, 526-534.	1.1	5
40	Mitochondrial c-Fos May Increase the Vulnerability of Neuro2a Cells to Cellular Stressors. Journal of Molecular Neuroscience, 2016, 59, 106-112.	1,1	5
41	The pivotal role of pituitary adenylate cyclase-activating polypeptide for lactate production and secretion in astrocytes during fear memory. Pharmacological Reports, 2021, 73, 1109-1121.	1.5	5
42	The dorsal hippocampal protein targeting to glycogen maintains ionotropic glutamate receptor subunits expression and contributes to working and short-term memories in mice. Journal of Pharmacological Sciences, 2021, 148, 108-115.	1.1	5
43	FFAR1/GPR40 Contributes to the Regulation of Striatal Monoamine Releases and Facilitation of Cocaine-Induced Locomotor Activity in Mice. Frontiers in Pharmacology, 2021, 12, 699026.	1.6	4
44	Validation of a Simple In Vitro Comet Assay Method Using CHL Cells. Genes and Environment, 2010, 32, 61-65.	0.9	4
45	Design and synthesis of pyrido [2,3-d] pyrimidine derivatives for a novel PAC1 receptor antagonist. European Journal of Medicinal Chemistry, 2022, 231, 114160.	2.6	3
46	PACAP Augments Nitric Oxide Synthesis in Rat Vascular Smooth Muscle Cells Stimulated with ILâ€1α. Annals of the New York Academy of Sciences, 2000, 921, 415-419.	1.8	2
47	The 9th International Symposium on VIP, PACAP, and Related Peptides. Journal of Molecular Neuroscience, 2010, 42, 264-265.	1.1	1
48	Chronic Royal Jelly Administration Induced Antidepressant-Like Effects Through Increased Sirtuin1 and Oxidative Phosphorylation Protein Expression in the Amygdala of Mice. Current Molecular Pharmacology, 2020, 14, 115-122.	0.7	1