Xia Wei

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9076390/publications.pdf

Version: 2024-02-01

623734 794594 1,057 20 14 19 citations h-index g-index papers 21 21 21 1212 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	Hydroxyl Conducting Hydrogels Enable Low-Maintenance Commercially Sized Rechargeable Zn–MnO2 Batteries for Use in Solar Microgrids. Polymers, 2022, 14, 417.	4.5	6
2	The advent of membrane-less zinc-anode aqueous batteries with lithium battery-like voltage. Materials Horizons, 2022, 9, 2160-2171.	12.2	4
3	High Performance Printed AgO-Zn Rechargeable Battery for Flexible Electronics. Joule, 2021, 5, 228-248.	24.0	78
4	Primary zinc-air batteries., 2021,, 23-45.		2
5	Investigating Degradation Modes in Znâ€AgO Aqueous Batteries with In Situ Xâ€Ray Micro Computed Tomography. Advanced Energy Materials, 2021, 11, 2101327.	19.5	20
6	Breaking the 2 V Barrier in Aqueous Zinc Chemistry: Creating 2.45 and 2.8 V MnO ₂ –Zn Aqueous Batteries. ACS Energy Letters, 2019, 4, 2144-2146.	17.4	142
7	Going beyond Intercalation Capacity of Aqueous Batteries by Exploiting Conversion Reactions of Mn and Zn electrodes for Energyâ€Dense Applications. Advanced Energy Materials, 2019, 9, 1902270.	19.5	59
8	(Invited) Improvements in High Energy Density Silver-Zinc Button Cells for Wearable Devices. ECS Meeting Abstracts, 2019, , .	0.0	0
9	Accessing the second electron capacity of MnO2 by exploring complexation and intercalation reactions in energy dense alkaline batteries. International Journal of Hydrogen Energy, 2018, 43, 8480-8487.	7.1	36
10	An Operando Study of the Initial Discharge of Bi and Bi/Cu Modified MnO ₂ . Journal of the Electrochemical Society, 2018, 165, A2935-A2947.	2.9	20
11	Regenerable Cu-intercalated MnO2 layered cathode for highly cyclable energy dense batteries. Nature Communications, 2017, 8, 14424.	12.8	216
12	Rechargeable Zinc Alkaline Anodes for Long-Cycle Energy Storage. Chemistry of Materials, 2017, 29, 4819-4832.	6.7	120
13	Rapid electrochemical synthesis of \hat{l} -MnO2 from \hat{l} -MnO2 and unleashing its performance as an energy dense electrode. Materials Today Energy, 2017, 6, 198-210.	4.7	30
14	A calcium hydroxide interlayer as a selective separator for rechargeable alkaline Zn/MnO2 batteries. Electrochemistry Communications, 2017, 81, 136-140.	4.7	49
15	A conversion-based highly energy dense Cu ²⁺ intercalated Bi-birnessite/Zn alkaline battery. Journal of Materials Chemistry A, 2017, 5, 15845-15854.	10.3	63
16	Impact of anode substrates on electrodeposited zinc over cycling in zinc-anode rechargeable alkaline batteries. Electrochimica Acta, 2016, 212, 603-613.	5.2	80
17	Electrodeposition of preferentially oriented zinc for flow-assisted alkaline batteries. Journal of Power Sources, 2014, 256, 145-152.	7.8	63
18	An indicator of zinc morphology transition in flowing alkaline electrolyte. Journal of Power Sources, 2012, 211, 119-128.	7.8	63

ARTICLE IF CITATIONS

19 6â€2-Methyl-1â€2,2â€2,3â€2,4â€2-tetrahydrospirocyclohexane-2â€2-quinazolin-4â€2-one. Acta Crystallographica Section E: 1

20 2-[(E)-(Dimethylamino)methyleneamino]benzonitrile. Acta Crystallographica Section E: Structure Reports Online, 2009, 65, o1306-o1306.