Mariana M V M Souza

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9076387/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Carbon formation and its influence on ethanol steam reforming over Ni/Al2O3 catalysts. Catalysis Today, 2007, 123, 257-264.	2.2	225
2	Study of Ni and Pt catalysts supported on α-Al2O3 and ZrO2 applied in methane reforming with CO2. Applied Catalysis A: General, 2007, 316, 175-183.	2.2	193
3	Reforming of Methane with Carbon Dioxide over Pt/ZrO2/Al2O3 Catalysts. Journal of Catalysis, 2001, 204, 498-511.	3.1	168
4	Biodiesel production from soybean oil and methanol using hydrotalcites as catalyst. Fuel Processing Technology, 2010, 91, 205-210.	3.7	130
5	Autothermal reforming of methane over Pt/ZrO2/Al2O3 catalysts. Applied Catalysis A: General, 2005, 281, 19-24.	2.2	120
6	Hydrogen production by aqueous-phase reforming of glycerol over nickel catalysts supported on CeO2. Fuel Processing Technology, 2011, 92, 330-335.	3.7	114
7	Steam reforming of model gasification tar compounds over nickel catalysts prepared from hydrotalcite precursors. Fuel Processing Technology, 2014, 121, 76-82.	3.7	101
8	Hydrogenolysis of glycerol to propylene glycol in continuous system without hydrogen addition over Cu-Ni catalysts. Applied Catalysis B: Environmental, 2018, 220, 31-41.	10.8	100
9	Methane oxidation – effect of support, precursor and pretreatment conditions – in situ reaction XPS and DRIFT. Catalysis Today, 2006, 118, 392-401.	2.2	94
10	Copper as promoter of the NiO–CeO 2 catalyst in the preferential CO oxidation. Applied Catalysis B: Environmental, 2016, 182, 257-265.	10.8	91
11	Hydrogen production by aqueous-phase reforming of ethanol over nickel catalysts prepared from hydrotalcite precursors. Catalysis Communications, 2008, 9, 2606-2611.	1.6	83
12	Synthesis of NiAl2O4 with high surface area as precursor of Ni nanoparticles for hydrogen production. International Journal of Hydrogen Energy, 2010, 35, 11725-11732.	3.8	81
13	Combustion synthesis of La0.7Sr0.3Co0.5Fe0.5O3 (LSCF) porous materials for application as cathode in IT-SOFC. Materials Research Bulletin, 2011, 46, 308-314.	2.7	79
14	Combination of carbon dioxide reforming and partial oxidation of methane over supported platinum catalysts. Applied Catalysis A: General, 2003, 255, 83-92.	2.2	73
15	Production of renewable hydrogen by aqueous-phase reforming of glycerol over Ni–Cu catalysts derived from hydrotalcite precursors. Renewable Energy, 2013, 50, 408-414.	4.3	73
16	Synthesis of 5-hydroxymethylfurfural from fructose catalyzed by phosphotungstic acid. Catalysis Today, 2017, 279, 296-304.	2.2	70
17	Aqueous-phase reforming of glycerol using Ni–Cu catalysts prepared from hydrotalcite-like precursors. Catalysis Science and Technology, 2013, 3, 1278.	2.1	62
18	PRODUCTION OF 5-HYDROXYMETHYLFURFURAL (HMF) VIA FRUCTOSE DEHYDRATION: EFFECT OF SOLVENT AND SALTING-OUT. Brazilian Journal of Chemical Engineering, 2015, 32, 119-126.	0.7	60

#	Article	IF	CITATIONS
19	Influence of the support in selective CO oxidation on Pt catalysts for fuel cell applications. International Journal of Hydrogen Energy, 2007, 32, 425-429.	3.8	59
20	Activation of supported nickel catalysts for carbon dioxide reforming of methane. Applied Catalysis A: General, 2004, 272, 133-139.	2.2	56
21	Steam reforming of tar using toluene as a model compound with nickel catalysts supported on hexaaluminates. Applied Catalysis A: General, 2014, 478, 234-240.	2.2	55
22	Continuous production of lactic acid from glycerol in alkaline medium using supported copper catalysts. Fuel Processing Technology, 2016, 144, 170-180.	3.7	52
23	Influence of the synthesis method on the porosity, microstructure and electrical properties of La0.7Sr0.3MnO3 cathode materials. Materials Characterization, 2009, 60, 1417-1423.	1.9	48
24	Selective CO oxidation in the presence of H2 over Pt and Pt-Sn catalysts supported on niobia. Journal of Power Sources, 2006, 158, 504-508.	4.0	47
25	Partial oxidation of methane over Ni–Co perovskite catalysts. Catalysis Communications, 2011, 12, 665-668.	1.6	47
26	Combustion synthesis of copper catalysts for selective CO oxidation. Journal of Power Sources, 2008, 179, 329-334.	4.0	45
27	Investigating the microstructure and catalytic properties of Ni/YSZ cermets as anodes for SOFC applications. Applied Catalysis A: General, 2009, 353, 305-309.	2.2	45
28	Selective CO oxidation with nano gold particles-based catalysts over Al2O3 and ZrO2. Applied Catalysis A: General, 2008, 347, 62-71.	2.2	39
29	Ethanol reforming and partial oxidation with Cu/Nb2O5 catalyst. Catalysis Today, 2009, 142, 252-257.	2.2	39
30	Hydrogen production from glycerol steam reforming over nickel catalysts supported on alumina and niobia: Deactivation process, effect of reaction conditions and kinetic modeling. International Journal of Hydrogen Energy, 2018, 43, 15064-15082.	3.8	38
31	Effect of propellant on the combustion synthesized Sr-doped LaMnO3 powders. Ceramics International, 2009, 35, 1683-1687.	2.3	36
32	Methane Conversion to Synthesis Gas by Partial Oxidation and CO2Reforming over Supported Platinum Catalysts. Catalysis Letters, 2003, 91, 11-17.	1.4	35
33	Hydrogenolysis of glycerol to 1,2-propanediol without external H2 addition in alkaline medium using Ni-Cu catalysts supported on Y zeolite. Renewable Energy, 2020, 160, 919-930.	4.3	35
34	Perovskite-based catalysts for tar removal by steam reforming: Effect of the presence of hydrogen sulfide. International Journal of Hydrogen Energy, 2017, 42, 9873-9880.	3.8	34
35	Coke Formation on Pt/ZrO2/Al2O3 Catalysts during CH4 Reforming with CO2. Industrial & Engineering Chemistry Research, 2002, 41, 4681-4685.	1.8	30
36	Application of Brazilian dolomites and mixed oxides as catalysts in tar removal system. Applied Catalysis A: General, 2017, 536, 1-8.	2.2	30

#	Article	IF	CITATIONS
37	Lactic acid production from glycerol in alkaline medium using Pt-based catalysts in continuous flow reaction system. Renewable Energy, 2018, 118, 160-171.	4.3	30
38	Effect of the fuel type on the synthesis of yttria stabilized zirconia by combustion method. Ceramics International, 2009, 35, 3441-3446.	2.3	29
39	Drifts and TPD analyses of ethanol on Pt catalysts over Al 2 O 3 and ZrO 2 —partial oxidation of ethanol. Canadian Journal of Chemical Engineering, 2011, 89, 1166-1175.	0.9	28
40	Synthesis Gas Production from Natural Gas on Supported Pt Catalysts. Journal of Natural Gas Chemistry, 2006, 15, 21-27.	1.8	24
41	Removal of boron from oilfield wastewater via adsorption with synthetic layered double hydroxides. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2014, 49, 923-932.	0.9	24
42	Effect of alkaline earth oxides on nickel catalysts supported over Î ³ -alumina for butanol steam reforming: Coke formation and deactivation process. International Journal of Hydrogen Energy, 2020, 45, 22906-22920.	3.8	24
43	Coking resistance evaluation of tar removal catalysts. Catalysis Communications, 2015, 71, 79-83.	1.6	23
44	Effect of niobia addition on cobalt catalysts supported on alumina for glycerol steam reforming. Renewable Energy, 2020, 148, 864-875.	4.3	23
45	Incorporation of cerium ions by sonication in Ni–Mg–Al layered double hydroxides. Applied Clay Science, 2010, 48, 542-546.	2.6	22
46	La0.7Sr0.3MnO3-coated SS444 alloy by dip-coating process for metallic interconnect supported Solid Oxide Fuel Cells. Journal of Power Sources, 2013, 241, 159-167.	4.0	22
47	Copper-based catalysts prepared from hydrotalcite precursors for shift reaction at low temperatures. Catalysis Today, 2008, 133-135, 750-754.	2.2	21
48	Effect of Doping Niobia over Ni/Al2O3 Catalysts for Methane Steam Reforming. Catalysis Letters, 2018, 148, 1478-1489.	1.4	20
49	Production of Renewable Hydrogen by Glycerol Steam Reforming Using Ni–Cu–Mg–Al Mixed Oxides Obtained from Hydrotalcite-like Compounds. Catalysis Letters, 2014, 144, 867-877.	1.4	19
50	Steam Reforming of Tar Model Compounds Over Nickel Catalysts Supported on Barium Hexaaluminate. Catalysis Letters, 2015, 145, 541-548.	1.4	19
51	Synthesis of La1â^xSrxMnO3 powders by polymerizable complex method: Evaluation of structural, morphological and electrical properties. Ceramics International, 2011, 37, 2229-2236.	2.3	18
52	Steam Reforming of Methane Over Catalyst Derived from Ordered Double Perovskite: Effect of Crystalline Phase Transformation. Catalysis Letters, 2016, 146, 47-53.	1.4	18
53	Structural Transformation of Cu–Mg–Al Mixed Oxide Catalysts Derived from Hydrotalcites During Shift Reaction. Catalysis Letters, 2009, 132, 58-63	1.4	17
54	CO2 capture by Mg–Al and Zn–Al hydrotalcite-like compounds. Adsorption, 2016, 22, 151-158.	1.4	17

#	Article	IF	CITATIONS
55	An evaluation of calcined hydrocalumite as carbon dioxide adsorbent using thermogravimetric analysis. Applied Clay Science, 2019, 182, 105252.	2.6	17
56	Cu catalysts supported on CaO/MgO for glycerol conversion to lactic acid in alkaline medium employing a continuous flow reaction system. RSC Advances, 2020, 10, 31123-31138.	1.7	16
57	Surface Characterization of Zirconia-Coated Alumina as Support for Pt Particles. Physica Status Solidi A, 2001, 187, 297-303.	1.7	15
58	Palladium supported on clays to catalytic deoxygenation of soybean fatty acids. Applied Clay Science, 2014, 95, 388-395.	2.6	15
59	Production of synthesis gas from natural gas using ZrO2-supported platinum. Studies in Surface Science and Catalysis, 2004, 147, 133-138.	1.5	14
60	The effect of support on methane activation over Pt catalysts in the presence of MoO3. Applied Catalysis A: General, 2007, 318, 207-212.	2.2	14
61	Thin films of La0.7Sr0.3MnO3â^î^ dip-coated on Fe–Cr alloys for SOFC metallic interconnect. International Journal of Hydrogen Energy, 2013, 38, 15335-15347.	3.8	14
62	Effect of CaO Addition on Nickel Catalysts Supported on Alumina for Glycerol Steam Reforming. Catalysis Letters, 2019, 149, 1991-2003.	1.4	14
63	Phosphotungstic acid on activated carbon: A remarkable catalyst for 5-hydroxymethylfurfural production. Molecular Catalysis, 2021, 500, 111334.	1.0	13
64	SÃntese de pós de LaMnO3 e LaCrO3 dopados com Sr pelo método de combustão: caracterização estrutural e avaliação termodinâmica. Ceramica, 2012, 58, 521-528.	0.3	12
65	Glycerol carbonate production from transesterification of glycerol with diethyl carbonate catalyzed by Ca/Al-mixed oxides derived from hydrocalumite. Biomass Conversion and Biorefinery, 2023, 13, 661-673.	2.9	12
66	Synthesis of Sr-doped LaCrO3 powders by combustion method. Journal of Thermal Analysis and Calorimetry, 2012, 109, 33-38.	2.0	10
67	Structural and electrical properties of La0.7Sr0.3Co0.5Fe0.5O3 powders synthesized by solid state reaction. Ceramics International, 2013, 39, 7975-7982.	2.3	10
68	Synthesis of La0.7Sr0.3MnO3 thin films supported on Fe–Cr alloy by sol–gel/dip-coating process: Evaluation of deposition parameters. Thin Solid Films, 2013, 534, 218-225.	0.8	10
69	Production of hydrogen from steam reforming of glycerol using nickel catalysts supported on Al2O3, CeO2 and ZrO2. Catalysis for Sustainable Energy, 2013, 1, .	0.7	10
70	Hydrogen production from steam reforming of acetic acid over Pt–Ni bimetallic catalysts supported on ZrO2. Biomass and Bioenergy, 2022, 156, 106317.	2.9	10
71	Characterization of yttria-stabilized zirconia films deposited by dip-coating on La0.7Sr0.3MnO3 substrate: Influence of synthesis parameters. Journal of Advanced Ceramics, 2013, 2, 55-62.	8.9	8
72	Coking Study of Nickel Catalysts Using Model Compounds. Catalysis Letters, 2016, 146, 1435-1444.	1.4	8

#	Article	IF	CITATIONS
73	Stability of Ni catalysts promoted with niobia for butanol steam reforming. Biomass and Bioenergy, 2020, 143, 105882.	2.9	8
74	Investigation of activity losses of gold nanoparticles in the CO selective oxidation. Journal of Power Sources, 2010, 195, 7386-7390.	4.0	7
75	Study of the mechanism of the autothermal reforming of methane on supported Pt catalysts. Studies in Surface Science and Catalysis, 2004, 147, 253-258.	1.5	6
76	Methane activation on alumina supported platinum, palladium, ruthenium and rhodium catalysts. Studies in Surface Science and Catalysis, 2004, 147, 643-648.	1.5	6
77	B-cation partial substitution of double perovskite La2NiTiO6 by Co2+: Effect on crystal structure, reduction behavior and catalytic activity. Catalysis Communications, 2017, 97, 93-97.	1.6	6
78	Effect of Magnesia Addition in Stability of Cobalt Catalysts Supported on Alumina for Hydrogen Generation by Glycerol Steam Reforming. Catalysis Letters, 2021, 151, 980-992.	1.4	6
79	Solid-state Synthesis of La _{0.7} Sr _{0.3} MnO ₃ Powders using Different Grinding Times. ECS Transactions, 2009, 25, 2301-2308.	0.3	5
80	Effect of Pt/HZSM-5 dealumination by high temperature reduction on glycerol oxidation. Journal of Porous Materials, 2020, 27, 707-717.	1.3	5
81	Synthesis and characterization of hydrocalumite for removal of fluoride from aqueous solutions. Environmental Science and Pollution Research, 2021, 28, 22439-22457.	2.7	5
82	Combined DFT and experimental study of the dispersion and interaction of copper species in Ni-CeO ₂ nanosized solid solutions. RSC Advances, 2016, 6, 5057-5067.	1.7	4
83	Interpretation of kinetic data with selected characterizations of active sites. Catalysis Today, 2005, 100, 145-150.	2.2	3
84	Autothermal reforming of methane over nickel catalysts prepared from hydrotalcite-like compounds. Studies in Surface Science and Catalysis, 2007, 167, 451-456.	1.5	3
85	TAR REMOVAL FROM BIOMASS GASIFICATION STREAMS: PROCESSES AND CATALYSTS. Quimica Nova, 2014, 37, .	0.3	3
86	OPTIMIZATION OF PRODUCTION OF 5-HYDROXYMETHYLFURFURAL FROM GLUCOSE IN A WATER: ACETONE BIPHASIC SYSTEM. Brazilian Journal of Chemical Engineering, 2015, 32, 501-508.	0.7	3
87	Structural Characterization of Sr-doped LaMnO ₃ and LaCrO ₃ Powders Synthesized by Combustion Method. ECS Transactions, 2009, 25, 2327-2334.	0.3	2
88	Produção e caracterização de filmes finos transparentes e condutores de óxido de grafeno reduzido. Revista Materia, 2018, 22, .	0.1	2
89	X-ray powder diffraction data of LaNi0.5Ti0.45Co0.05O3, LaNi0.45Co0.05Ti0.5O3, and LaNi0.5Ti0.5O3 perovskites. Powder Diffraction, 2021, 36, 29-34.	0.4	2
90	Characterization of Sr and Ba-Doped LaCrO ₃ Powders Synthesized by EDTA Method. ECS Transactions, 2011, 35, 2537-2545.	0.3	1

6

#	Article	IF	CITATIONS
91	Methyl ester production by esterification/transesterification reactions on continuous test using SBA-15 catalyst. Journal of Environmental Chemical Engineering, 2018, 6, 5452-5458.	3.3	1
92	Evaluation of Operational Cycles for Longâ€Term Run of a Tar Removal Catalytic System. Chemical Engineering and Technology, 2019, 42, 980-986.	0.9	1
93	Production of Renewable Hydrogen by Aqueous-Phase Reforming of Glycerol Over Ni-Cu Catalysts Derived from Hydrotalcite Precursors. , 2014, , 413-426.		1
94	Preparation and characterization of yttria stabilized zirconia (YSZ) films deposited by dip-coating on LSM-YSZ substrate with different proportions. Revista Materia, 2019, 24, .	0.1	1
95	Synthesis and Characterization of LaNi0.5Ti0.5O3 and La2NiTiO6 Double Perovskite Nanoparticles. Materials, 2022, 15, 2411.	1.3	1
96	Effect of Gel Viscosity on the LSM Films Supported on Metallic Substrate. ECS Transactions, 2011, 35, 2161-2167.	0.3	0
97	Ni/x%Nb2O5/Al2O3 Catalysts Prepared via Coprecipitation-Wet Impregnation Method for Methane Steam Reforming. Current Catalysis, 2020, 9, 80-89.	0.5	0
98	SYNTHESIS AND CHARACTERIZATION OF HYDROCALUMITE: INFLUENCE OF AGING CONDITIONS ON THE STRUCTURE, TEXTURAL PROPERTIES, THERMAL STABILITY, AND BASICITY. Clays and Clay Minerals, 2020, 68, 273-286.	0.6	0
99	Renewable Hydrogen Production from Butanol Steam Reforming over Nickel Catalysts Promoted by Lanthanides. Processes, 2021, 9, 1815.	1.3	0
100	Cation reducibility of LaNi _{0.5} Ti _{0.5} O ₃ , LaNi _{0.5} Ti _{0.45} Co _{0.05} O ₃ , and LaNi _{0.45} Co _{0.05} Ti _{0.5} O ₃ perovskites from X-ray powder diffraction data using the Rietveld method. Powder Diffraction, 0, , 1-7.	0.4	0