Senad Dizdar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/907615/publications.pdf

Version: 2024-02-01

		1163117	1372567	
15	141	8	10	
papers	citations	h-index	g-index	
15	15	15	108	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	CITATIONS
1	Influence of processing conditions on the microstructure and sliding wear of a promising Fe-based coating deposited by HVAF. Surface and Coatings Technology, 2021, 409, 126953.	4.8	17
2	Laser Cladding Treatment for Refurbishing Disc Brake Rotors: Environmental and Tribological Analysis. Tribology Letters, 2021, 69, 1.	2.6	12
3	Grey Cast Iron Brake Discs Laser Cladded with Nickel-Tungsten Carbideâ€"Friction, Wear and Airborne Wear Particle Emission. Atmosphere, 2020, 11, 621.	2.3	23
4	A pin-on-disc study of airborne wear particle emissions from studded tyre on concrete road contacts. Wear, 2018, 410-411, 165-172.	3.1	13
5	Pitting resistance of sintered small-module gears. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2013, 227, 1225-1240.	1.8	6
6	Friction and wear characterization of sintered low alloyed chromium steels for structural components. Wear, 2011, 273, 17-22.	3.1	7
7	Precision Gears with Sintered Cr Materials. , 2008, , .		O
8	Material Properties of Heat Treated Double Pressed/Sintered P/M Steels in Comparison to Warm Compacted/Sinter Hardened Materials. , 2003, , .		4
9	Wear transition of a lubricated sliding steel contact as a function of surface texture anisotropy and formation of boundary layers. Wear, 2000, 237, 205-210.	3.1	12
10	Influence of plastic deformation on seizure initiation in a lubricated sliding contact. Wear, 1999, 232, 151-156.	3.1	10
11	Surface analysis of boundary-lubricated spherical roller thrust bearings. Wear, 1998, 215, 156-164.	3.1	16
12	Influence of pre-formed boundary layers on wear transition in sliding lubricated contacts. Wear, 1997, 213, 117-122.	3.1	13
13	Rolling Contact Fatigue Tests of Selectively Densified Materials. , 0, , .		3
14	High Density Gears by New Forming Technology. , 0, , .		2
15	Opportunities to Replace Wrought Gears With High Performance PM Gears in Automotive Applications. , 0, , .		3