Manuel Espinosa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9076042/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Facts and Family Secrets of Plasmids That Replicate via the Rolling-Circle Mechanism. Microbiology and Molecular Biology Reviews, 2022, 86, e0022220.	6.6	10
2	Where to From Here?. Frontiers in Molecular Biosciences, 2022, 9, 848444.	3.5	3
3	PclR is a transcriptional activator of the gene that encodes the pneumococcal collagen-like protein PclA. Scientific Reports, 2022, 12, .	3.3	2
4	Interactions of the Streptococcus pneumoniae Toxin-Antitoxin RelBE Proteins with Their Target DNA. Microorganisms, 2021, 9, 851.	3.6	2
5	Editorial: Prokaryotic Communications: From Macromolecular Interdomain to Intercellular Talks (Recognition) and Beyond. Frontiers in Molecular Biosciences, 2021, 8, 670572.	3.5	3
6	Recognition of Streptococcal Promoters by the Pneumococcal SigA Protein. Frontiers in Molecular Biosciences, 2021, 8, 666504.	3.5	6
7	In vitro DNA Inversions Mediated by the PsrA Site-Specific Tyrosine Recombinase of Streptococcus pneumoniae. Frontiers in Molecular Biosciences, 2020, 7, 43.	3.5	4
8	Complete labelling of pneumococcal DNA-binding proteins with seleno-L-methionine. Journal of Microbiological Methods, 2019, 166, 105720.	1.6	1
9	Transcriptional activation by MafR, a global regulator of Enterococcus faecalis. Scientific Reports, 2019, 9, 6146.	3.3	5
10	DNAâ€binding properties of MafR, a global regulator ofEnterococcus faecalis. FEBS Letters, 2018, 592, 1412-1425.	2.8	20
11	When Humans Met Superbugs: Strategies to Tackle Bacterial Resistances to Antibiotics. Biomolecular Concepts, 2018, 9, 216-226.	2.2	20
12	The Streptococcus pneumoniae yefM-yoeB and relBE Toxin-Antitoxin Operons Participate in Oxidative Stress and Biofilm Formation. Toxins, 2018, 10, 378.	3.4	34
13	Antisense and yet sensitive: Copy number control of rolling circleâ€replicating plasmids by small RNAs. Wiley Interdisciplinary Reviews RNA, 2018, 9, e1500.	6.4	6
14	Relaxase MobM Induces a Molecular Switch at Its Cognate Origin of Transfer. Frontiers in Molecular Biosciences, 2018, 5, 17.	3.5	4
15	Editorial: The Good, The Bad, and The Ugly: Multiple Roles of Bacteria in Human Life. Frontiers in Microbiology, 2018, 9, 1702.	3.5	15
16	Rolling Circle Replicating Plasmids. , 2018, , 1084-1088.		0
17	Crosstalk between vertical and horizontal gene transfer: plasmid replication control by a conjugative relaxase. Nucleic Acids Research, 2017, 45, 7774-7785.	14.5	30
18	The Importance of the Expendable: Toxin–Antitoxin Genes in Plasmids and Chromosomes. Frontiers in Microbiology, 2017, 8, 1479.	3.5	64

#	Article	IF	CITATIONS
19	Structural basis of a histidine-DNA nicking/joining mechanism for gene transfer and promiscuous spread of antibiotic resistance. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E6526-E6535.	7.1	27
20	Heterologous Expression of Toxins from Bacterial Toxin-Antitoxin Systems in Eukaryotic Cells: Strategies and Applications. Toxins, 2016, 8, 49.	3.4	22
21	The Streptococcus pneumoniae pezAT Toxin–Antitoxin System Reduces β-Lactam Resistance and Genetic Competence. Frontiers in Microbiology, 2016, 7, 1322.	3.5	24
22	Keeping the Wolves at Bay: Antitoxins of Prokaryotic Type II Toxin-Antitoxin Systems. Frontiers in Molecular Biosciences, 2016, 3, 9.	3.5	124
23	MgaSpn and H-NS: Two Unrelated Global Regulators with Similar DNA-Binding Properties. Frontiers in Molecular Biosciences, 2016, 3, 60.	3.5	24
24	Streptococcal group B integrative and mobilizable element IMESag- rpsI encodes a functional relaxase involved in its transfer. Open Biology, 2016, 6, 160084.	3.6	9
25	Singh Chhatwal, our friend. Environmental Microbiology Reports, 2016, 8, 556-557.	2.4	Ο
26	Editorial: Modulating Prokaryotic Lifestyle by DNA-Binding Proteins: Learning from (Apparently) Simple Systems. Frontiers in Molecular Biosciences, 2016, 3, 86.	3.5	1
27	Plasmid Rolling-Circle Replication. Microbiology Spectrum, 2015, 3, PLAS-0035-2014.	3.0	69
28	Structural studies on DNA cleavage-and-ligation nucleases of mobile genetic elements involved in spread of antibiotic resistance. Acta Crystallographica Section A: Foundations and Advances, 2015, 71, s248-s248.	0.1	0
29	The 5′-tail of antisense RNAII of pMV158 plays a critical role in binding to the target mRNA and in translation inhibition of repB. Frontiers in Genetics, 2015, 6, 225.	2.3	11
30	The antisense leitmotif: A prelude. Plasmid, 2015, 78, 1-3.	1.4	0
31	One cannot rule them all: Are bacterial toxins-antitoxins druggable?. FEMS Microbiology Reviews, 2015, 39, 522-540.	8.6	68
32	Global Regulation of Gene Expression by the MafR Protein of Enterococcus faecalis. Frontiers in Microbiology, 2015, 6, 1521.	3.5	22
33	Mobilizable Rolling-Circle Replicating Plasmids from Gram-Positive Bacteria: A Low-Cost Conjugative Transfer. Microbiology Spectrum, 2014, 2, 8.	3.0	21
34	Functional validation of putative toxin-antitoxin genes from the Gram-positive pathogen Streptococcus pneumoniae: phd-doc is the fourth bona-fide operon. Frontiers in Microbiology, 2014, 5, 677.	3.5	34
35	Bringing them together: Plasmid pMV158 rolling circle replication and conjugation under an evolutionary perspective. Plasmid, 2014, 74, 15-31.	1.4	36
36	Conditional Activation of Toxin-Antitoxin Systems: Postsegregational Killing and Beyond. Microbiology Spectrum, 2014, 2, .	3.0	42

#	Article	IF	CITATIONS
37	Rolling Circle Replicating Plasmids. , 2014, , 1-5.		3
38	Plasmids as models for studying macromolecular interactions: the pMV158 paradigm. Research in Microbiology, 2013, 164, 199-204.	2.1	16
39	Nicking activity of the pMV158 MobM relaxase on cognate and heterologous origins of transfer. Plasmid, 2013, 70, 120-130.	1.4	12
40	Toxin-Antitoxin Loci in Streptococcus pneumoniae. , 2013, , 315-339.		4
41	The pneumococcal MgaSpn virulence transcriptional regulator generates multimeric complexes on linear double-stranded DNA. Nucleic Acids Research, 2013, 41, 6975-6991.	14.5	30
42	Functional Properties and Structural Requirements of the Plasmid pMV158-Encoded MobM Relaxase Domain. Journal of Bacteriology, 2013, 195, 3000-3008.	2.2	7
43	Toxin-Antitoxin Genes of the Gram-Positive Pathogen Streptococcus pneumoniae: So Few and Yet So Many. Microbiology and Molecular Biology Reviews, 2012, 76, 773-791.	6.6	57
44	Autoregulation of the Synthesis of the MobM Relaxase Encoded by the Promiscuous Plasmid pMV158. Journal of Bacteriology, 2012, 194, 1789-1799.	2.2	13
45	Activator Role of the Pneumococcal Mga-Like Virulence Transcriptional Regulator. Journal of Bacteriology, 2012, 194, 4197-4207.	2.2	19
46	The toxin–antitoxin proteins relBE <i>2Spn</i> of <i>Streptococcus pneumoniae</i> : Characterization and association to their DNA target. Proteins: Structure, Function and Bioinformatics, 2012, 80, 1834-1846.	2.6	12
47	Construction of a plasmid vector based on the pMV158 replicon for cloning and inducible gene expression in Streptococcus pneumoniae. Plasmid, 2012, 67, 53-59.	1.4	16
48	Fitness of the pMV158 replicon in Streptococcus pneumoniae. Plasmid, 2012, 67, 162-166.	1.4	16
49	Genetic Regulation of the <i>yefM-yoeB</i> Toxin-Antitoxin Locus of Streptococcus pneumoniae. Journal of Bacteriology, 2011, 193, 4612-4625.	2.2	45
50	The MobM relaxase domain of plasmid pMV158: thermal stability and activity upon Mn2+ and specific DNA binding. Nucleic Acids Research, 2011, 39, 4315-4329.	14.5	29
51	Bacterial toxin-antitoxin systems targeting translation. Journal of Applied Biomedicine, 2010, 8, 179-188.	1.7	17
52	Novel plasmid-based genetic tools for the study of promoters and terminators in Streptococcus pneumoniae and Enterococcus faecalis. Journal of Microbiological Methods, 2010, 83, 156-163.	1.6	43
53	The relBE2Spn Toxin-Antitoxin System of Streptococcus pneumoniae: Role in Antibiotic Tolerance and Functional Conservation in Clinical Isolates. PLoS ONE, 2010, 5, e11289.	2.5	31
54	Lagging-Strand DNA Replication Origins Are Required for Conjugal Transfer of the Promiscuous Plasmid pMV158. Journal of Bacteriology, 2009, 191, 720-727.	2.2	40

#	Article	IF	CITATIONS
55	Repressor CopG prevents access of RNA polymerase to promoter and actively dissociates open complexes. Nucleic Acids Research, 2009, 37, 4799-4811.	14.5	35
56	Large-scale filter mating assay for intra- and inter-specific conjugal transfer of the promiscuous plasmid pMV158 in Gram-positive bacteria. Plasmid, 2009, 61, 65-70.	1.4	18
57	Plasmid replication initiator RepB forms a hexamer reminiscent of ring helicases and has mobile nuclease domains. EMBO Journal, 2009, 28, 1666-1678.	7.8	45
58	Protein p56 from the Bacillus subtilis phage Â29 inhibits DNA-binding ability of uracil-DNA glycosylase. Nucleic Acids Research, 2007, 35, 5393-5401.	14.5	26
59	Interactions between the RepB initiator protein of plasmid pMV158 and two distant DNA regions within the origin of replication. Nucleic Acids Research, 2007, 35, 1230-1244.	14.5	35
60	The yefM-yoeB Toxin-Antitoxin Systems of Escherichia coli and Streptococcus pneumoniae : Functional and Structural Correlation. Journal of Bacteriology, 2007, 189, 1266-1278.	2.2	63
61	Determination of specific DNA strand discontinuities with nucleotide resolution in exponentionally growing bacteria harboring rolling circle-replicating plasmids. FEMS Microbiology Letters, 2006, 152, 363-369.	1.8	19
62	The chromosomal relBE2 toxin-antitoxin locus of Streptococcus pneumoniae: characterization and use of a bioluminescence resonance energy transfer assay to detect toxin-antitoxin interaction. Molecular Microbiology, 2006, 59, 1280-1296.	2.5	48
63	Toll-Like Receptor 2 Deficiency Delays Pneumococcal Phagocytosis and Impairs Oxidative Killing by Granulocytes. Infection and Immunity, 2005, 73, 8397-8401.	2.2	53
64	Regulation of Streptococcus pneumoniae distribution by Toll-like receptor 2 in vivo. Immunobiology, 2005, 210, 229-236.	1.9	17
65	Unsaturated fatty acids are inhibitors of bacterial conjugation. Microbiology (United Kingdom), 2005, 151, 3517-3526.	1.8	100
66	Bacillus subtilis DesR Functions as a Phosphorylation-activated Switch to Control Membrane Lipid Fluidity. Journal of Biological Chemistry, 2004, 279, 39340-39347.	3.4	74
67	Structural features of the initiator of replication protein RepB encoded by the promiscuous plasmid pMV158. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2004, 1696, 113-119.	2.3	13
68	Features of the Plasmid pMV158-encoded MobM, a Protein Involved in its Mobilization. Journal of Molecular Biology, 2004, 335, 733-743.	4.2	26
69	Construction of the mobilizable plasmid pMV158GFP, a derivative of pMV158 that carries the gene encoding the green fluorescent protein. Plasmid, 2003, 49, 281-285.	1.4	85
70	Conjugative Plasmid Transfer in Gram-Positive Bacteria. Microbiology and Molecular Biology Reviews, 2003, 67, 277-301.	6.6	490
71	A Genetically Economical Family of Plasmid-Encoded Transcriptional Repressors Involved in Control of Plasmid Copy Number. Journal of Bacteriology, 2002, 184, 4943-4951.	2.2	46
72	Plasmid copy number control: an ever-growing story. Molecular Microbiology, 2002, 37, 492-500.	2.5	151

#	Article	IF	CITATIONS
73	In Vitro Analysis of the Terminator TII of the Inhibitor Antisense rna II Gene from Plasmid pMV158. Plasmid, 2001, 45, 75-87.	1.4	18
74	MalR-mediated Regulation of the Streptococcus pneumoniae malMP Operon at PromoterP. Journal of Biological Chemistry, 2001, 276, 14946-14954.	3.4	30
75	Expression of green fluorescent protein inLactococcus lactis. FEMS Microbiology Letters, 2000, 183, 229-234.	1.8	39
76	A Functional Lagging Strand Origin Does Not Stabilize Plasmid pMV158 Inheritance in Escherichia coli. Plasmid, 2000, 43, 49-58.	1.4	9
77	Construction of a Tightly Regulated Plasmid Vector for Streptococcus pneumoniae: Controlled Expression of the Green Fluorescent Protein. Plasmid, 2000, 43, 205-213.	1.4	30
78	Quantitative detection of Streptococcus pneumoniae cells harbouring single or multiple copies of the gene encoding the green fluorescent protein. Microbiology (United Kingdom), 2000, 146, 1267-1273.	1.8	17
79	Conjugal transfer of plasmid pMV158: uncoupling of the pMV158 origin of transfer from the mobilization gene mobM, and modulation of pMV158 transfer in Escherichia coli mediated by IncP plasmids. Microbiology (United Kingdom), 2000, 146, 2259-2265.	1.8	22
80	Characterization of a single-strand origin, ssoU, required for broad host range replication of rolling-circle plasmids. Molecular Microbiology, 1999, 33, 466-475.	2.5	49
81	Expression of themobMgene of the streptococcal plasmid pMV158 inLactococcus lactissubsp.lactis. FEMS Microbiology Letters, 1999, 176, 403-410.	1.8	16
82	Identification of a New Gene in the Streptococcal Plasmid pLS1: ThernalGene. Plasmid, 1998, 40, 214-224.	1.4	4
83	Structural features of the plasmid pMV158-encoded transcriptional repressor CopG, a protein sharing similarities with both helix-turn-helix and β-sheet DNA binding proteins. , 1998, 32, 248-261.		12
84	In vivo definition of the functional origin of leading strand replication on the lactococcal plasmid pFX2. Molecular Genetics and Genomics, 1998, 260, 38-47.	2.4	8
85	Overexpression, purification, crystallization and preliminary X-ray diffraction analysis of the pMV158-encoded plasmid transcriptional repressor protein CopG. FEBS Letters, 1998, 425, 161-165.	2.8	5
86	Lagging strand replication of rolling-circle plasmids: Specific recognition of the ssoA-type origins in different gram-positive bacteria. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 10505-10510.	7.1	47
87	Replication and Control of Circular Bacterial Plasmids. Microbiology and Molecular Biology Reviews, 1998, 62, 434-464.	6.6	836
88	Lagging-Strand Replication from the <i>ssoA</i> Origin of Plasmid pMV158 in <i>Streptococcus pneumoniae</i> : In Vivo and In Vitro Influences of Mutations in Two Conserved <i>ssoA</i> Regions. Journal of Bacteriology, 1998, 180, 83-89.	2.2	32
89	The Maltose/Maltodextrin Regulon of Streptococcus pneumoniae. Journal of Biological Chemistry, 1997, 272, 30860-30865.	3.4	54
90	The mobilization protein, MobM, of the streptococcal plasmid pMV158 specifically cleaves supercoiled DNA at the plasmid oriT. Journal of Molecular Biology, 1997, 266, 688-702.	4.2	94

#	Article	IF	CITATIONS
91	Initiation of replication of plasmid pMV158: mechanisms of DNA strand-transfer reactions mediated by the initiator RepB protein. Journal of Molecular Biology, 1997, 268, 840-856.	4.2	41
92	Replication control of plasmid pLS1: the antisense RNA II and the compact rnall region are involved in translational regulation of the initiator RepB synthesis. Molecular Microbiology, 1997, 23, 95-108.	2.5	52
93	Determination of specific DNA strand discontinuities with nucleotide resolution in exponentionally growing bacteria harboring rolling circle-replicating plasmids. FEMS Microbiology Letters, 1997, 152, 363-369.	1.8	2
94	Broad-host-range plasmid replication: an open question. Molecular Microbiology, 1996, 21, 661-666.	2.5	53
95	Isolation and characterization of pLS 1 plasmid mutants with increased copy numbers. FEMS Microbiology Letters, 1996, 140, 85-91.	1.8	9
96	Replication control of plasmid pLS1: efficient regulation of plasmid copy number is exerted by the combined action of two plasmid components, CopG and RNA II. Molecular Microbiology, 1995, 18, 913-924.	2.5	84
97	Plasmid rolling circle replication and its control. FEMS Microbiology Letters, 1995, 130, 111-120.	1.8	77
98	Specific Nicking-Closing Activity of the Initiator of Replication Protein RepB of Plasmid pMV158 on Supercoiled or Single-stranded DNA. Journal of Biological Chemistry, 1995, 270, 3772-3779.	3.4	43
99	Plasmid rolling circle replication and its control. FEMS Microbiology Letters, 1995, 130, 111-120.	1.8	3
100	Correlation between DNA Bending and Transcriptional Activation at a Plasmid Promoter. Journal of Molecular Biology, 1994, 241, 7-17.	4.2	34
101	Chemical synthesis of a fully active transcriptional repressor protein Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 5178-5182.	7.1	15
102	Replication of the promiscuous plasmid pLSI: a region encompassing the minus origin of replication is associated with stable plasmid inheritance. Molecular Genetics and Genomics, 1993, 241-241, 97-105.	2.4	68
103	In vivo definition of the functional origin of replication (ori(+)) of the promiscuous plasmid pLS1. Molecular Genetics and Genomics, 1993, 237-237, 65-72.	2.4	27
104	Rolling circle-replicating plasmids from Gram-positive and Gram-negative bacteria: a wall falls. Molecular Microbiology, 1993, 8, 789-796.	2.5	184
105	Molecular cloning of a chromosomal DNA region encompassing the dihydrofolate reductase gene ofStreptococcus pneumoniae. Current Microbiology, 1993, 26, 11-16.	2.2	0
106	Structure of the Maltodextrin-uptake Locus of Streptococcus pneumoniae. Journal of Molecular Biology, 1993, 230, 800-811.	4.2	62
107	A genetic system to study the in vivo role of transcriptional regulators in Escherichia coli. Gene, 1992, 116, 75-80.	2.2	8
108	Labelling DNA ends with the Klenow fragment of theE.coliDNA polymerase I: a cautionary note. Nucleic Acids Research, 1991, 19, 1956-1956.	14.5	2

#	Article	IF	CITATIONS
109	Initiation of replication of plasmid pLS1. Journal of Molecular Biology, 1990, 213, 247-262.	4.2	66
110	Comparative expression of the pC194 cat gene in Streptococcus pneumoniae, Bacillus subtilis and Escherichia coli. Gene, 1990, 86, 71-79.	2.2	32
111	Purification and characterization of RepA, a protein involved in the copy number control of plasmid pLS1. Nucleic Acids Research, 1989, 17, 2405-2420.	14.5	53
112	Three regions in the DNA of plasmid pLS1 show sequence-directed static bending. Nucleic Acids Research, 1988, 16, 9113-9126.	14.5	28
113	Identification of the origin and direction of replication of the broad-host-range plasmid pLS1. Nucleic Acids Research, 1988, 16, 115-133.	14.5	55
114	Initiation signals for the conversion of single stranded to double stranded DNA forms in the streptococcal plasmid pLS1. Nucleic Acids Research, 1987, 15, 5561-5580.	14.5	116
115	Complementation of Bacillus subtilis polA mutants by DNA polymerase I from Streptococcus pneumoniae. Molecular Genetics and Genomics, 1987, 210, 203-210.	2.4	16
116	Replication of the streptococcal plasmid pMV158 and derivatives in cell-free extracts of Escherichia coli. Molecular Genetics and Genomics, 1987, 206, 428-435.	2.4	56
117	Deoxyribonucleases of non-pathogenic corynebacteria. FEMS Microbiology Letters, 1987, 44, 343-348.	1.8	3
118	Identification and analysis of genes for tetracycline resistance and replication functions in the broad-host-range plasmid pLS1. Journal of Molecular Biology, 1986, 192, 753-765.	4.2	251
119	Cloning of a gene encoding a DNA polymerase-exonuclease of Streptococcus pneumoniae. Gene, 1986, 44, 79-88.	2.2	27
120	Selective advantage of deletions enhancing chloramphenicol acetyltransferase gene expression in Streptococcus pneumoniae plasmids. Gene, 1986, 41, 153-163.	2.2	60
121	Physical structure and genetic expression of the sulfonamide-resistance plasmid pLS80 and its derivatives in Streptococcus pneumoniae and Bacillus subtilis. Molecular Genetics and Genomics, 1984, 195, 402-410.	2.4	34
122	Transfer and expression of recombinant plasmids carrying pneumococcal mal genes in Bacillus subtilis. Gene, 1984, 28, 301-310.	2.2	21
123	Interspecific plasmid transfer between Streptococcus pneumoniae and Bacillus subtilis. Molecular Genetics and Genomics, 1982, 188, 195-201.	2.4	33
124	Facilitation of Plasmid Transfer in Streptococcus pneumoniae by Chromosomal Homology. Journal of Bacteriology, 1982, 150, 692-701.	2.2	88
125	The effect of penicillin on competence in Bacillus subtilis cultures growing in chemostat at different doubling times. Archives of Microbiology, 1972, 82, 206-212.	2.2	0
126	PENICILLIN AND POLYMYXIN EFFECTS ON THE CHROMOGENESIS OF PSEUDOMONAS AERUGINOSA STRAINS. Journal of Antibiotics, 1971, 24, 266-269.	2.0	0

#	Article	IF	CITATIONS
127	Bacterial Toxin-Antitoxin Systems as Targets for the Development of Novel Antibiotics. , 0, , 313-329.		9
128	Conditional Activation of Toxin-Antitoxin Systems: Postsegregational Killing and Beyond. , 0, , 175-192.		2
129	Plasmid Rolling-Circle Replication. , 0, , 45-69.		3
130	Mobilizable Rolling-Circle Replicating Plasmids from Gram-Positive Bacteria: A Low-Cost Conjugative Transfer. , 0, , 257-276.		0