Javier Raso

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9075969/publications.pdf

Version: 2024-02-01

INVIED RASO

#	Article	IF	CITATIONS
1	Current applications and new opportunities for the use of pulsed electric fields in food science and industry. Food Research International, 2015, 77, 773-798.	6.2	538
2	Nonthermal Preservation of Foods Using Combined Processing Techniques. Critical Reviews in Food Science and Nutrition, 2003, 43, 265-285.	10.3	347
3	Critical factors determining inactivation kinetics by pulsed electric field food processing. Trends in Food Science and Technology, 2001, 12, 112-121.	15.1	279
4	Influence of different factors on the output power transferred into medium by ultrasound. Ultrasonics Sonochemistry, 1999, 5, 157-162.	8.2	278
5	Improving the pressing extraction of polyphenols of orange peel by pulsed electric fields. Innovative Food Science and Emerging Technologies, 2013, 17, 79-84.	5.6	233
6	Pulsed-electric-field-assisted extraction of anthocyanins from purple-fleshed potato. Food Chemistry, 2013, 136, 1330-1336.	8.2	186
7	Inactivation of peroxidase, lipoxygenase, and polyphenol oxidase by manothermosonication. Journal of Agricultural and Food Chemistry, 1994, 42, 252-256.	5.2	168
8	Improving Mass Transfer to Soften Tissues by Pulsed Electric Fields: Fundamentals and Applications. Annual Review of Food Science and Technology, 2012, 3, 263-282.	9.9	167
9	Predicting inactivation of Salmonella senftenberg by pulsed electric fields. Innovative Food Science and Emerging Technologies, 2000, 1, 21-29.	5.6	159
10	Enhancement of the extraction of betanine from red beetroot by pulsed electric fields. Journal of Food Engineering, 2009, 90, 60-66.	5.2	157
11	Influence of different factors on the inactivation of Salmonella senftenberg by pulsed electric fields. International Journal of Food Microbiology, 2000, 55, 143-146.	4.7	122
12	C-phycocyanin extraction assisted by pulsed electric field from Artrosphira platensis. Food Research International, 2017, 99, 1042-1047.	6.2	121
13	Effect of Pulsed Electric Field Treatments on Permeabilization and Extraction of Pigments from Chlorella vulgaris. Journal of Membrane Biology, 2014, 247, 1269-1277.	2.1	112
14	Improving the extraction of carotenoids from tomato waste by application of ultrasound under pressure. Separation and Purification Technology, 2014, 136, 130-136.	7.9	105
15	Pulsed electric fieldâ€assisted extraction of valuable compounds from microorganisms. Comprehensive Reviews in Food Science and Food Safety, 2020, 19, 530-552.	11.7	101
16	Influence of the treatment medium temperature on lutein extraction assisted by pulsed electric fields from Chlorella vulgaris. Innovative Food Science and Emerging Technologies, 2015, 29, 15-22.	5.6	98
17	Enhancement of the solid-liquid extraction of sucrose from sugar beet (Beta vulgaris) by pulsed electric fields. LWT - Food Science and Technology, 2009, 42, 1674-1680.	5.2	92
18	Inactivation of Salmonella enterica by UV-C Light Alone and in Combination with Mild Temperatures. Applied and Environmental Microbiology, 2012, 78, 8353-8361.	3.1	88

JAVIER RASO

#	Article	IF	CITATIONS
19	Effect of a pulsed electric field treatment on the anthocyanins composition and other quality parameters of Cabernet Sauvignon freshly fermented model wines obtained after different maceration times. LWT - Food Science and Technology, 2009, 42, 1225-1231.	5.2	83
20	Improving Carotenoid Extraction from Tomato Waste by Pulsed Electric Fields. Frontiers in Nutrition, 2014, 1, 12.	3.7	82
21	Improvement of winemaking process using pulsed electric fields at pilot-plant scale. Evolution of chromatic parameters and phenolic content of Cabernet Sauvignon red wines. Food Research International, 2010, 43, 761-766.	6.2	80
22	Inactivation of Salmonella Enteritidis, Salmonella Typhimurium, and Salmonella Senftenberg by Ultrasonic Waves under Pressure. Journal of Food Protection, 2000, 63, 451-456.	1.7	75
23	A Comparative Study on the Effects of Millisecond- and Microsecond-Pulsed Electric Field Treatments on the Permeabilization and Extraction of Pigments from Chlorella vulgaris. Journal of Membrane Biology, 2015, 248, 883-891.	2.1	73
24	Pulsed electric fields as a green technology for the extraction of bioactive compounds from thinned peach by-products. Innovative Food Science and Emerging Technologies, 2018, 45, 335-343.	5.6	72
25	Improvements in the aqueous extraction of polyphenols from borage (Borago officinalis L.) leaves by pulsed electric fields: Pulsed electric fields (PEF) applications. Industrial Crops and Products, 2015, 65, 390-396.	5.2	68
26	Inactivation of Salmonella spp. in liquid whole egg using pulsed electric fields, heat, and additives. Food Microbiology, 2012, 30, 393-399.	4.2	66
27	Improving Polyphenol Extraction from Lemon Residues by Pulsed Electric Fields. Waste and Biomass Valorization, 2019, 10, 889-897.	3.4	61
28	Pulsed electric field permeabilization and extraction of phycoerythrin from Porphyridium cruentum. Algal Research, 2019, 37, 51-56.	4.6	58
29	Experimental design approach for the evaluation of anthocyanin content of rosé wines obtained by pulsed electric fields. Influence of temperature and time of maceration. Food Chemistry, 2011, 126, 1482-1487.	8.2	53
30	Defining treatment conditions for pulsed electric field pasteurization of apple juice. International Journal of Food Microbiology, 2011, 151, 29-35.	4.7	52
31	Release of Mannoproteins during Saccharomyces cerevisiae Autolysis Induced by Pulsed Electric Field. Frontiers in Microbiology, 2016, 7, 1435.	3.5	52
32	Effect of temperature, pH and presence of nisin on inactivation of Salmonella Typhimurium and Escherichia coli O157:H7 by pulsed electric fields. Food Research International, 2012, 45, 1080-1086.	6.2	50
33	Pulsed electric field-assisted extraction of carotenoids from fresh biomass of Rhodotorula glutinis. Innovative Food Science and Emerging Technologies, 2018, 47, 421-427.	5.6	47
34	Inactivation of spoilage yeasts in apple juice by UV–C light and in combination with mild heat. Innovative Food Science and Emerging Technologies, 2015, 32, 146-155.	5.6	43
35	Predicting thermal inactivation in media of different pH of Salmonella grown at different temperatures. International Journal of Food Microbiology, 2003, 87, 45-53.	4.7	42
36	Assessing the efficacy of PEF treatments for improving polyphenol extraction during red wine vinifications. Innovative Food Science and Emerging Technologies, 2017, 39, 179-187.	5.6	41

Javier Raso

#	Article	IF	CITATIONS
37	Heat Resistance of Alicyclobacillus acidocaldarius in Water, Various Buffers, and Orange Juice. Journal of Food Protection, 2000, 63, 1377-1380.	1.7	40
38	Physicochemical and functional properties of liquid whole egg treated by the application of Pulsed Electric Fields followed by heat in the presence of triethyl citrate. Food Research International, 2012, 48, 484-490.	6.2	38
39	Sporulation Temperature and Heat Resistance of Bacillus subtilis at Different pH Values. Journal of Food Protection, 1995, 58, 239-243.	1.7	37
40	Effects of millisecond and microsecond pulsed electric fields on red beet cell disintegration and extraction of betanines. Industrial Crops and Products, 2016, 84, 28-33.	5.2	37
41	Organic-solvent-free extraction of carotenoids from yeast Rhodotorula glutinis by application of ultrasound under pressure. Ultrasonics Sonochemistry, 2020, 61, 104833.	8.2	36
42	Design and evaluation of a high hydrostatic pressure combined process for pasteurization of liquid whole egg. Innovative Food Science and Emerging Technologies, 2012, 14, 1-10.	5.6	35
43	Design of a combined process for the inactivation of Salmonella Enteritidis in liquid whole egg at 55°C. International Journal of Food Microbiology, 2011, 145, 476-482.	4.7	31
44	Winery Trial on Application of Pulsed Electric Fields for Improving Vinification of Garnacha Grapes. Food and Bioprocess Technology, 2014, 7, 1457-1464.	4.7	31
45	Factors influencing autolysis of Saccharomyces cerevisiae cells induced by pulsed electric fields. Food Microbiology, 2018, 73, 67-72.	4.2	31
46	Thermal and Non-Thermal Physical Methods for Improving Polyphenol Extraction in Red Winemaking. Beverages, 2019, 5, 47.	2.8	31
47	Acquisition of pulsed electric fields resistance in Staphylococcus aureus after exposure to heat and alkaline shocks. Food Control, 2012, 25, 407-414.	5.5	30
48	Inactivation of Salmonella typhimurium and Lactobacillus plantarum by UV-C light in flour powder. Innovative Food Science and Emerging Technologies, 2016, 35, 1-8.	5.6	28
49	Pulsed electric fields accelerate release of mannoproteins from Saccharomyces cerevisiae during aging on the lees of Chardonnay wine. Food Research International, 2019, 116, 795-801.	6.2	27
50	Heat resistance of Yersinia enterocolitica grown at different temperatures and heated in different media. International Journal of Food Microbiology, 1999, 47, 59-66.	4.7	25
51	Influence of pulsed electric fields on aroma and polyphenolic compounds of Garnacha wine. Food and Bioproducts Processing, 2019, 116, 249-257.	3.6	23
52	Survival of heated Bacillus coagulans spores in a medium acidified with lactic or citric acid. International Journal of Food Microbiology, 1997, 38, 25-30.	4.7	22
53	Direct Contact Ultrasound in Food Processing: Impact on Food Quality. Frontiers in Nutrition, 2021, 8, 633070.	3.7	20
54	Heat Resistance of Bacillus subtilis and Bacillus coagulans: Effect of Sporulation Temperature in Foods With Various Acidulants. Journal of Food Protection, 1996, 59, 487-492.	1.7	19

Javier Raso

#	Article	IF	CITATIONS
55	Modelling of polyphenoloxidase inactivation by pulsed electric fields considering coupled effects of temperature and electric field. Innovative Food Science and Emerging Technologies, 2013, 20, 126-132.	5.6	19
56	Modelling microbial growth in modified-atmosphere-packed hake (Merluccius merluccius) fillets stored at different temperatures. Food Research International, 2019, 122, 506-516.	6.2	19
57	Combined Effect of Temperature, pH, and Presence of Nisin on Inactivation of Staphylococcus aureus and Listeria monocytogenes by Pulsed Electric Fields. Foodborne Pathogens and Disease, 2011, 8, 797-802.	1.8	17
58	Effect of ohmic heating processing conditions on color stability of fungal pigments. Food Science and Technology International, 2017, 23, 338-348.	2.2	16
59	Enzymatic Processes Triggered by PEF for Astaxanthin Extraction From Xanthophyllomyces dendrorhous. Frontiers in Bioengineering and Biotechnology, 2020, 8, 857.	4.1	16
60	PEF-dependency on polyphenol extraction during maceration/fermentation of Grenache grapes. Innovative Food Science and Emerging Technologies, 2020, 60, 102303.	5.6	16
61	Changes in Phenolic Compounds of Aragón Red Wines During Alcoholic Fermentation. Food Science and Technology International, 2011, 17, 77-86.	2.2	15
62	Effect of pulsed electric fields on mannoproteins release from Saccharomyces cerevisiae during the aging on lees of Caladoc red wine. LWT - Food Science and Technology, 2020, 118, 108788.	5.2	15
63	Liquid Whole Egg Ultrapasteurization by Combination of PEF, Heat, and Additives. Food and Bioprocess Technology, 2013, 6, 2070-2080.	4.7	14
64	Evolution of Polyphenolic Compounds and Sensory Properties of Wines Obtained from Grenache Grapes Treated by Pulsed Electric Fields during Aging in Bottles and in Oak Barrels. Foods, 2020, 9, 542.	4.3	14
65	Application of High-Power Ultrasound in the Food Industry. , 0, , .		14
66	Heat resistance of Listeria species to liquid whole egg ultrapasteurization treatment. Journal of Food Engineering, 2012, 111, 478-481.	5.2	12
67	Pulsed Electric Fields to Improve the Use of Non-Saccharomyces Starters in Red Wines. Foods, 2021, 10, 1472.	4.3	12
68	PEF treatments of high specific energy permit the reduction of maceration time during vinification of Caladoc and Grenache grapes. Innovative Food Science and Emerging Technologies, 2020, 63, 102375.	5.6	12
69	Environmental Applications, Food and Biomass Processing by Pulsed Electric Fields. , 2017, , 389-476.		9
70	Effect of ozone processing conditions on stability of fungal pigments. Innovative Food Science and Emerging Technologies, 2018, 45, 255-263.	5.6	9
71	Modulating the bitterness of Empeltre olive oil by partitioning polyphenols between oil and water phases: Effect on quality and shelf life. Food Science and Technology International, 2019, 25, 47-55.	2.2	9

JAVIER RASO

#	Article	IF	CITATIONS
73	Influence of dimethyl dicarbonate on the resistance of Escherichia coli to a combined UV-Heat treatment in apple juice. Frontiers in Microbiology, 2015, 6, 501.	3.5	8
74	Grape Must Processed by Pulsed Electric Fields: Effect on the Inoculation and Development of Non-Saccharomyces Yeasts. Food and Bioprocess Technology, 2020, 13, 1087-1094.	4.7	8
75	Improving the microbial inactivation uniformity of pulsed electric field ohmic heating treatments of solid products. LWT - Food Science and Technology, 2022, 154, 112709.	5.2	7
76	Debittering olive oil by liquid–liquid extraction: Kinetics and the effect on the quality of Arbequina olive oil. European Journal of Lipid Science and Technology, 2016, 118, 1243-1249.	1.5	5
77	Production of a Granulysin-Based, Tn-Targeted Cytolytic Immunotoxin Using Pulsed Electric Field Technology. International Journal of Molecular Sciences, 2020, 21, 6165.	4.1	5
78	Two-Step PEF Processing for Enhancing the Polyphenol Concentration and Decontaminating a Red Grape Juice. Foods, 2022, 11, 621.	4.3	5
79	Manosonication-assisted extraction of trans-astaxanthin from Xanthophyllomyces dendrorhous: A green and organic solvent-free methodology. Food and Bioproducts Processing, 2021, 129, 65-74.	3.6	4
80	Pulsed Electric Field Treatment for Fruit and Vegetable Processing. , 2016, , 1-21.		4
81	Pulsed Electric Fields in Wineries: Potential Applications. , 2017, , 2825-2842.		3
82	Other Applications of Pulsed Electric Fields Technology for the Food Industry. Food Engineering Series, 2022, , 439-466.	0.7	2
83	Preclinical Studies of Granulysin-Based Anti-MUC1-Tn Immunotoxins as a New Antitumoral Treatment. Biomedicines, 2022, 10, 1223.	3.2	2
84	Dataset on the use of the Ratkowsky model for describing the influence of storage temperature on microbial growth in hake fillets (Merluccius merluccius) stored under MAP. Data in Brief, 2019, 27, 104743.	1.0	1
85	Microbial Decontamination by Pulsed Electric Fields (PEF) in Winemaking. , 0, , .		1
86	Applications of Pulsed Electric Fields in Winemaking. Food Engineering Series, 2022, , 337-356.	0.7	1
87	Pulsed Electric Fields in Wineries: Potential Applications. , 2016, , 1-18.		0