Ziying Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9075775/publications.pdf Version: 2024-02-01

ZIVING WANG

#	Article	IF	CITATIONS
1	Flexible, non-contact and multifunctional humidity sensors based on two-dimensional phytic acid doped co-metal organic frameworks nanosheets. Journal of Colloid and Interface Science, 2022, 607, 2010-2018.	9.4	32
2	Wearable Multifunctional Grapheneâ€Based Aerogel/Spacer Fabric Composites for Sensing and Impact Protection. Advanced Materials Technologies, 2022, 7, .	5.8	6
3	An Energy Harvester Coupled with a Triboelectric Mechanism and Electrostatic Mechanism for Biomechanical Energy Harvesting. Nanomaterials, 2022, 12, 933.	4.1	13
4	Porous Co3O4 nanocrystals derived by metal-organic frameworks on reduced graphene oxide for efficient room-temperature NO2 sensing properties. Journal of Alloys and Compounds, 2021, 856, 158199.	5.5	30
5	Recent Advances in Natural Functional Biopolymers and Their Applications of Electronic Skins and Flexible Strain Sensors. Polymers, 2021, 13, 813.	4.5	37
6	Surface microstructure-controlled ZrO2 for highly sensitive room-temperature NO2 sensors. Nano Materials Science, 2021, 3, 268-275.	8.8	31
7	Shape-controlled synthesis of Ag/Cs4PbBr6 Janus nanoparticles. Nanotechnology, 2021, 32, 075601.	2.6	4
8	Light-Assisted Enhancement of Gas Sensing Property for Micro-Nanostructure Electronic Device: A Mini Review. Frontiers in Chemistry, 2021, 9, 811074.	3.6	9
9	Biomassâ€derived Nitrogen and Phosphorus Coâ€doped Hierarchical Micro/mesoporous Carbon Materials for Highâ€performance Nonâ€enzymatic H ₂ O ₂ Sensing. Electroanalysis, 2019, 31, 527-534.	2.9	12
10	Construction of ZnO/SnO ₂ Heterostructure on Reduced Graphene Oxide for Enhanced Nitrogen Dioxide Sensitive Performances at Room Temperature. ACS Sensors, 2019, 4, 2048-2057.	7.8	142
11	Study on highly selective sensing behavior of ppb-level oxidizing gas sensors based on Zn2SnO4 nanoparticles immobilized on reduced graphene oxide under humidity conditions. Sensors and Actuators B: Chemical, 2019, 285, 590-600.	7.8	70
12	Mesoporous Magnesium Oxide Nanosheet Electrocatalysts for the Detection of Lead(II). ACS Applied Nano Materials, 2019, 2, 2606-2611.	5.0	11
13	Solvent-free synthesis of mesoporous carbon employing KIT-6 as hard template for removal of aqueous rhodamine B. Journal of Porous Materials, 2019, 26, 941-950.	2.6	8
14	Anchoring ultrafine Pd nanoparticles and SnO2 nanoparticles on reduced graphene oxide for high-performance room temperature NO2 sensing. Journal of Colloid and Interface Science, 2018, 514, 599-608.	9.4	60
15	Oxygen vacancy engineering for enhanced sensing performances: A case of SnO2 nanoparticles-reduced graphene oxide hybrids for ultrasensitive ppb-level room-temperature NO2 sensing. Sensors and Actuators B: Chemical, 2018, 266, 812-822.	7.8	109
16	Investigation of Microstructure Effect on NO ₂ Sensors Based on SnO ₂ Nanoparticles/Reduced Graphene Oxide Hybrids. ACS Applied Materials & Interfaces, 2018, 10, 41773-41783.	8.0	100
17	Rational design of Ag nanocubes-reduced graphene oxide nanocomposites for high-performance non-enzymatic H2O2 sensing. Chemical Research in Chinese Universities, 2017, 33, 946-950.	2.6	2
18	High-performance reduced graphene oxide-based room-temperature NO2 sensors: A combined surface modification of SnO2 nanoparticles and nitrogen doping approach. Sensors and Actuators B: Chemical, 2017, 242, 269-279.	7.8	99

ZIYING WANG

#	Article	IF	CITATIONS
19	Studies on QCM-type NO2 gas sensor based on graphene composites at room temperature. Chemical Research in Chinese Universities, 2016, 32, 924-928.	2.6	13
20	Preparation of Ag nanoparticles-SnO2 nanoparticles-reduced graphene oxide hybrids and their application for detection of NO2 at room temperature. Sensors and Actuators B: Chemical, 2016, 222, 893-903.	7.8	122
21	Electrodeposition synthesis of reduced graphene oxide–carbon nanotube hybrids on indium tin oxide electrode for simultaneous electrochemical detection of ascorbic acid, dopamine and uric acid. RSC Advances, 2015, 5, 106307-106314.	3.6	37
22	Synthesis of core–shell α-Fe ₂ O ₃ @NiO nanofibers with hollow structures and their enhanced HCHO sensing properties. Journal of Materials Chemistry A, 2015, 3, 5635-5641.	10.3	83
23	Confined nanospace pyrolysis for synthesis of N-doped few-layer graphene-supported yolk–shell carbon hollow spheres for electrochemical sensing. RSC Advances, 2015, 5, 37568-37573.	3.6	6
24	Synthesis of Ag nanoparticle–carbon nanotube–reduced graphene oxide hybrids for highly sensitive non-enzymatic hydrogen peroxide detection. RSC Advances, 2015, 5, 39037-39041.	3.6	41
25	Core–shell Co ₃ O ₄ /α-Fe ₂ O ₃ heterostructure nanofibers with enhanced gas sensing properties. RSC Advances, 2015, 5, 36340-36346.	3.6	51
26	Preparation of zinc oxide nanoparticle–reduced graphene oxide–gold nanoparticle hybrids for detection of NO ₂ . RSC Advances, 2015, 5, 91760-91765.	3.6	49
27	Electrostatic sprayed Cr-loaded NiO core-in-hollow-shell structured micro/nanospheres with ultra-selectivity and sensitivity for xylene. CrystEngComm, 2014, 16, 7731.	2.6	33
28	High surface area mesoporous CuO: a high-performance electrocatalyst for non-enzymatic glucose biosensing. RSC Advances, 2014, 4, 33327-33331.	3.6	44
29	Oxygen Plasma-Assisted Defect Engineering of Graphene Nanocomposites with Ultrasmall Co ₃ O ₄ Nanocrystals for Monitoring Toxic Nitrogen Dioxide at Room Temperature Langmuir O	3.5	3