List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9075642/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Global Observations of the Interstellar Interaction from the Interstellar Boundary Explorer (IBEX). Science, 2009, 326, 959-962.	12.6	461
2	IBEX—Interstellar Boundary Explorer. Space Science Reviews, 2009, 146, 11-33.	8.1	305
3	The Heliosphere's Interstellar Interaction: No Bow Shock. Science, 2012, 336, 1291-1293.	12.6	226
4	Comparison of Interstellar Boundary Explorer Observations with 3D Global Heliospheric Models. Science, 2009, 326, 966-968.	12.6	221
5	Synopsis of the interstellar He parameters from combined neutral gas, pickup ion and UVÂscattering observations and related consequences. Astronomy and Astrophysics, 2004, 426, 897-907.	5.1	178
6	INTERSTELLAR GAS FLOW PARAMETERS DERIVED FROM INTERSTELLAR BOUNDARY EXPLORER-Lo OBSERVATIONS IN 2009 AND 2010: ANALYTICAL ANALYSIS. Astrophysical Journal, Supplement Series, 2012, 198, 11.	7.7	160
7	SEPARATION OF THE<1>INTERSTELLAR BOUNDARY EXPLORERRIBBON FROM GLOBALLY DISTRIBUTED ENERGETIC NEUTRAL ATOM FLUX. Astrophysical Journal, 2011, 731, 56.	4.5	153
8	NEUTRAL INTERSTELLAR HELIUM PARAMETERS BASED ON IBEX-Lo OBSERVATIONS AND TEST PARTICLE CALCULATIONS. Astrophysical Journal, Supplement Series, 2012, 198, 12.	7.7	145
9	Direct Observations of Interstellar H, He, and O by the Interstellar Boundary Explorer. Science, 2009, 326, 969-971.	12.6	135
10	Interstellar Mapping and Acceleration Probe (IMAP): A New NASA Mission. Space Science Reviews, 2018, 214, 1.	8.1	129
11	LOCAL INTERSTELLAR MEDIUM: SIX YEARS OF DIRECT SAMPLING BY <i>IBEX</i> . Astrophysical Journal, Supplement Series, 2015, 220, 22.	7.7	128
12	THE FIRST THREE YEARS OF <i>IBEX</i> OBSERVATIONS AND OUR EVOLVING HELIOSPHERE. Astrophysical Journal, Supplement Series, 2012, 203, 1.	7.7	114
13	Observations of the helium focusing cone with pickup ions. Astronomy and Astrophysics, 2004, 426, 845-854.	5.1	110
14	INTERSTELLAR NEUTRAL HELIUM IN THE HELIOSPHERE FROM <i>IBEX</i> OBSERVATIONS. III. MACH NUMBER OF THE FLOW, VELOCITY VECTOR, AND TEMPERATURE FROM THE FIRST SIX YEARS OF MEASUREMENTS. Astrophysical Journal, Supplement Series, 2015, 220, 28.	7.7	99
15	SEPARATION OF THE RIBBON FROM GLOBALLY DISTRIBUTED ENERGETIC NEUTRAL ATOM FLUX USING THE FIRST FIVE YEARS OF <i>IBEX</i> OBSERVATIONS. Astrophysical Journal, Supplement Series, 2014, 215, 13.	7.7	97
16	Evolving outer heliosphere: Largeâ€scale stability and time variations observed by the Interstellar Boundary Explorer. Journal of Geophysical Research, 2010, 115, .	3.3	92
17	WARMER LOCAL INTERSTELLAR MEDIUM: A POSSIBLE RESOLUTION OF THE <i>ULYSSES</i> - <i>IBEX</i> ENIGMA. Astrophysical Journal, 2015, 801, 28.	4.5	90
18	<i>IBEX</i> : THE FIRST FIVE YEARS (2009-2013). Astrophysical Journal, Supplement Series, 2014, 213, 20.	7.7	89

#	Article	IF	CITATIONS
19	Heliolatitude and Time Variations of Solar Wind Structure from in situ Measurements and Interplanetary Scintillation Observations. Solar Physics, 2013, 285, 167-200.	2.5	85
20	Density of neutral interstellar hydrogen at the termination shock from Ulysses pickup ion observations. Astronomy and Astrophysics, 2008, 491, 7-19.	5.1	81
21	DETERMINATION OF INTERSTELLAR He PARAMETERS USING FIVE YEARS OF DATA FROM THE <i>IBEX</i> : BEYOND CLOSED FORM APPROXIMATIONS. Astrophysical Journal, Supplement Series, 2015, 220, 25.	7.7	81
22	Seven Years of Imaging the Global Heliosphere with IBEX. Astrophysical Journal, Supplement Series, 2017, 229, 41.	7.7	79
23	Survival probability and energy modification of hydrogen energetic neutral atoms on their way from the termination shock to Earth orbit. Astronomy and Astrophysics, 2008, 488, 1057-1068.	5.1	79
24	WARM BREEZE FROM THE STARBOARD BOW: A NEW POPULATION OF NEUTRAL HELIUM IN THE HELIOSPHERE. Astrophysical Journal, Supplement Series, 2014, 213, 29.	7.7	77
25	Modulation of neutral interstellar He, Ne, O in the heliosphere. Survival probabilities and abundances at IBEX. Astronomy and Astrophysics, 2013, 557, A50.	5.1	74
26	INTERSTELLAR NEUTRAL HELIUM IN THE HELIOSPHERE FROM IBEX OBSERVATIONS. IV. FLOW VECTOR, MACH NUMBER, AND ABUNDANCE OF THE WARM BREEZE. Astrophysical Journal, Supplement Series, 2016, 223, 25.	7.7	71
27	Decades-Long Changes of the Interstellar Wind Through Our Solar System. Science, 2013, 341, 1080-1082.	12.6	63
28	The Galactic Environment of the Sun: Interstellar Material Inside and Outside of the Heliosphere. Space Science Reviews, 2009, 146, 235-273.	8.1	61
29	Neutral interstellar He parameters in front of the heliosphere 1994–2007. Astronomy and Astrophysics, 2014, 569, A8.	5.1	60
30	LOCAL INTERSTELLAR NEUTRAL HYDROGEN SAMPLED IN SITU BY <i>IBEX</i> . Astrophysical Journal, Supplement Series, 2012, 198, 14.	7.7	59
31	INTERSTELLAR FLOW AND TEMPERATURE DETERMINATION WITH <i>IBEX</i> : ROBUSTNESS AND SENSITIVITY TO SYSTEMATIC EFFECTS. Astrophysical Journal, Supplement Series, 2015, 220, 24.	7.7	59
32	Interstellar Pickup Ion Observations to 38 au. Astrophysical Journal, Supplement Series, 2017, 233, 8.	7.7	59
33	Solar Cycle of Imaging the Global Heliosphere: Interstellar Boundary Explorer (IBEX) Observations from 2009–2019. Astrophysical Journal, Supplement Series, 2020, 248, 26.	7.7	58
34	ESTIMATION OF THE NEON/OXYGEN ABUNDANCE RATIO AT THE HELIOSPHERIC TERMINATION SHOCK AND IN THE LOCAL INTERSTELLAR MEDIUM FROM <i>IBEX</i> Series, 2012, 198, 13.	7.7	57
35	SOLAR RADIATION PRESSURE AND LOCAL INTERSTELLAR MEDIUM FLOW PARAMETERS FROM <i>INTERSTELLAR BOUNDARY EXPLORER </i> INTERSTELLAR MEASUREMENTS. Astrophysical Journal, 2013, 775, 86.	4.5	57

36 Solar Parameters for Modeling the Interplanetary Background. , 2013, , 67-138.

#	Article	IF	CITATIONS
37	Density of Neutral Hydrogen in the Sun's Interstellar Neighborhood. Astrophysical Journal, 2020, 903, 48.	4.5	56
38	AN ANALYTICAL MODEL OF INTERSTELLAR GAS IN THE HELIOSPHERE TAILORED TO <i>INTERSTELLAR BOUNDARY EXPLORER</i> OBSERVATIONS. Astrophysical Journal, Supplement Series, 2012, 198, 10.	7.7	54
39	LOW ENERGY NEUTRAL ATOMS FROM THE HELIOSHEATH. Astrophysical Journal, 2014, 784, 89.	4.5	53
40	Neutral H Density at the Termination Shock: AÂConsolidation of Recent Results. Space Science Reviews, 2009, 143, 177-190.	8.1	51
41	INTERSTELLAR NEUTRAL HELIUM IN THE HELIOSPHERE FROM <i>IBEX</i> OBSERVATIONS. II. THE WARSAW TEST PARTICLE MODEL (WTPM). Astrophysical Journal, Supplement Series, 2015, 220, 27.	7.7	51
42	ENERGETIC NEUTRAL ATOMS MEASURED BY THE <i>INTERSTELLAR BOUNDARY EXPLORER </i> (<i>IBEX </i>): EVIDENCE FOR MULTIPLE HELIOSHEATH POPULATIONS. Astrophysical Journal, 2014, 780, 98.	4.5	49
43	Diagnosing the Neutral Interstellar Gas Flow at 1 AU with IBEX-Lo. Space Science Reviews, 2009, 146, 149-172.	8.1	46
44	HELIOSPHERIC NEUTRAL ATOM SPECTRA BETWEEN 0.01 AND 6 keV FROM <i>IBEX</i> . Astrophysical Journal, 2012, 754, 14.	4.5	46
45	A POSSIBLE GENERATION MECHANISM FOR THE <i>IBEX</i> RIBBON FROM OUTSIDE THE HELIOSPHERE. Astrophysical Journal Letters, 2010, 715, L84-L87.	8.3	44
46	Reconstruction of Helio-Latitudinal Structure of the Solar Wind Proton Speed and Density. Solar Physics, 2015, 290, 2589-2615.	2.5	44
47	REVISITING THE ISN FLOW PARAMETERS, USING A VARIABLE <i>IBEX</i> POINTING STRATEGY. Astrophysical Journal, 2015, 804, 42.	4.5	44
48	Radiation transport of heliospheric Lyman- <i>α</i> from combined Cassini and Voyager data sets. Astronomy and Astrophysics, 2008, 491, 21-28.	5.1	42
49	Heliospheric conditions that affect the interstellar gas inside the heliosphere. Astronomy and Astrophysics, 2004, 426, 885-895.	5.1	40
50	Sun–Heliosphere Observation-based Ionization Rates Model. Astrophysical Journal, 2020, 897, 179.	4.5	40
51	Neutral interstellar hydrogen in the inner heliosphere underÂtheÂinfluence of wavelength-dependent solar radiation pressure. Astronomy and Astrophysics, 2009, 493, 207-216.	5.1	40
52	The Helium Warm Breeze in IBEX Observations As a Result of Charge-exchange Collisions in the Outer Heliosheath. Astrophysical Journal, 2017, 845, 15.	4.5	39
53	Time Dependence of the IBEX Ribbon and the Globally Distributed Energetic Neutral Atom Flux Using the First 9 Years of Observations. Astrophysical Journal, Supplement Series, 2018, 239, 1.	7.7	37
54	Latitudinal structure and north-south asymmetry of the solar wind from Lyman-αremote sensing by SWAN. Astronomy and Astrophysics, 2003, 408, 1165-1177.	5.1	37

#	Article	IF	CITATIONS
55	Imprints from the solar cycle on the helium atom and helium pickup ion distributions. Annales Geophysicae, 2003, 21, 1315-1330.	1.6	35
56	INTERSTELLAR NEUTRAL HELIUM IN THE HELIOSPHERE FROM <i>IBEX</i> OBSERVATIONS. I. UNCERTAINTIES AND BACKGROUNDS IN THE DATA AND PARAMETER DETERMINATION METHOD. Astrophysical Journal, Supplement Series, 2015, 220, 26.	7.7	35
57	DETERMINATION OF INTERSTELLAR O PARAMETERS USING THE FIRST TWO YEARS OF DATA FROM THE INTERSTELLAR BOUNDARY EXPLORER. Astrophysical Journal, 2016, 828, 81.	4.5	35
58	The Downwind Hemisphere of the Heliosphere: Eight Years of IBEX-Lo Observations. Astrophysical Journal, 2017, 851, 2.	4.5	35
59	Interstellar Neutral Gas Species and Their Pickup Ions inside the Heliospheric Termination Shock. Ionization Rates for H, O, Ne, and He. Astrophysical Journal, 2019, 872, 57.	4.5	35
60	Interstellar Neutral Helium in the Heliosphere from IBEX Observations. VI. The He ⁺ Density and the Ionization State in the Very Local Interstellar Matter. Astrophysical Journal, 2019, 882, 60.	4.5	35
61	Interstellar Neutral Helium in the Heliosphere from IBEX Observations. V. Observations in IBEX-Lo ESA Steps 1, 2, and 3. Astrophysical Journal, 2018, 854, 119.	4.5	34
62	VARIATIONS IN THE HELIOSPHERIC POLAR ENERGETIC NEUTRAL ATOM FLUX OBSERVED BY THE <i>INTERSTELLAR BOUNDARY EXPLORER</i> . Astrophysical Journal, 2012, 747, 110.	4.5	33
63	THE Ne-TO-O ABUNDANCE RATIO OF THE INTERSTELLAR MEDIUM FROM <i>IBEX</i> -Lo OBSERVATIONS. Astrophysical Journal, 2014, 795, 97.	4.5	32
64	CAN <i>IBEX</i> DETECT INTERSTELLAR NEUTRAL HELIUM OR OXYGEN FROM ANTI-RAM DIRECTIONS?. Astrophysical Journal, Supplement Series, 2015, 220, 30.	7.7	31
65	THE ROLL-OVER OF HELIOSPHERIC NEUTRAL HYDROGEN BELOW 100 eV: OBSERVATIONS AND IMPLICATIONS. Astrophysical Journal, 2016, 821, 107.	4.5	31
66	Evolution of the Solar Lyα Line Profile during the Solar Cycle. Astrophysical Journal, 2018, 852, 115.	4.5	31
67	THE INTERSTELLAR NEUTRAL He HAZE IN THE HELIOSPHERE: WHAT CAN WE LEARN?. Astrophysical Journal, Supplement Series, 2015, 220, 29.	7.7	30
68	TRACKING THE SOLAR CYCLE THROUGH IBEX OBSERVATIONS OF ENERGETIC NEUTRAL ATOM FLUX VARIATIONS AT THE HELIOSPHERIC POLES. Astrophysical Journal, 2016, 833, 277.	4.5	29
69	A Three-dimensional Map of the Heliosphere from IBEX. Astrophysical Journal, Supplement Series, 2021, 254, 40.	7.7	29
70	LOCAL INTERSTELLAR HYDROGEN'S DISAPPEARANCE AT 1 AU: FOUR YEARS OF <i>IBEX</i> IN THE RISING SOLAR CYCLE. Astrophysical Journal, 2013, 767, 130.	4.5	28
71	Evidence of direct detection of interstellar deuterium in the local interstellar medium by IBEX. Astronomy and Astrophysics, 2013, 557, A125.	5.1	28
72	IBEX OBSERVATIONS OF SECONDARY INTERSTELLAR HELIUM AND OXYGEN DISTRIBUTIONS. Astrophysical Journal, 2016, 833, 130.	4.5	27

#	Article	IF	CITATIONS
73	DISTANCE TO THE IBEX RIBBON SOURCE INFERRED FROM PARALLAX. Astrophysical Journal, 2016, 823, 119.	4.5	27
74	The Interstellar Boundary Explorer Science Operations Center. Space Science Reviews, 2009, 146, 207-234.	8.1	26
75	Ionization rates in the heliosheath and in astrosheaths. Astronomy and Astrophysics, 2014, 563, A69.	5.1	26
76	Evolution of the Solar Lyα Line Profile during the Solar Cycle. II. How Accurate Is the Present Radiation Pressure Paradigm for Interstellar Neutral H in the Heliosphere?. Astrophysical Journal, 2018, 868, 49.	4.5	26
77	Interstellar Neutral Gas Species and Their Pickup Ions inside the Heliospheric Termination Shock: The Large-scale Structures. Astrophysical Journal, 2019, 879, 24.	4.5	26
78	Model-free Maps of Interstellar Neutral Hydrogen Measured with IBEX between 2009 and 2018. Astrophysical Journal, 2019, 871, 52.	4.5	25
79	Very Local Interstellar Medium Revealed by a Complete Solar Cycle of Interstellar Neutral Helium Observations with IBEX. Astrophysical Journal, Supplement Series, 2022, 259, 42.	7.7	25
80	CORRECTING THE RECORD ON THE ANALYSIS OF <i>IBEX </i> AND <i>STEREO </i> DATA REGARDING VARIATIONS IN THE NEUTRAL INTERSTELLAR WIND. Astrophysical Journal, 2015, 801, 61.	4.5	24
81	Update of the Solar Ly <i>α</i> Profile Line Model. Astrophysical Journal, Supplement Series, 2020, 247, 62.	7.7	24
82	IMAGING THE HELIOSPHERE USING NEUTRAL ATOMS FROM SOLAR WIND ENERGY DOWN TO 15 eV. Astrophysical Journal, 2014, 796, 9.	4.5	23
83	THE ENERGY-DEPENDENT POSITION OF THE IBEX RIBBON DUE TO THE SOLAR WIND STRUCTURE. Astrophysical Journal, 2016, 827, 71.	4.5	22
84	A SURVEY OF MAGNETIC WAVES EXCITED BY NEWBORN INTERSTELLAR He ⁺ OBSERVED BY THE ACE SPACECRAFT AT 1 au. Astrophysical Journal, 2016, 830, 47.	4.5	22
85	Magnetic Waves Excited by Newborn Interstellar Pickup Ions Measured by the Voyager Spacecraft from 1 to 45 au. II. Instability and Turbulence Analyses. Astrophysical Journal, 2018, 863, 76.	4.5	22
86	Solar Wind Turbulence from 1 to 45 au. IV. Turbulent Transport and Heating of the Solar Wind Using Voyager Observations. Astrophysical Journal, 2020, 900, 94.	4.5	22
87	Solar cycle variation of interstellar neutral He, Ne, O density and pick-up ions along the Earth's orbit. Monthly Notices of the Royal Astronomical Society, 2016, 458, 3691-3704.	4.4	21
88	Magnetic Waves Excited by Newborn Interstellar Pickup Ions Measured by the Voyager Spacecraft from 1 to 45 au. I. Wave Properties. Astrophysical Journal, 2018, 863, 75.	4.5	21
89	The Heliosphere Is Not Round. Astrophysical Journal, 2018, 862, 11.	4.5	21
90	Solar cycle dependence of the production of H+ pick-up ions in the inner heliosphere. Advances in Space Research, 1995, 16, 121-124.	2.6	20

#	Article	IF	CITATIONS
91	Detectability of neutral interstellar deuterium by a forthcoming SMEX mission IBEX. Astronomy and Astrophysics, 2008, 483, L35-L38.	5.1	20
92	Solar Wind Turbulence from 1 to 45 au. III. Anisotropy of Magnetic Fluctuations in the Inertial Range Using Voyager and ACE Observations. Astrophysical Journal, 2020, 900, 93.	4.5	20
93	PRECISION POINTING OF IBEX-Lo OBSERVATIONS. Astrophysical Journal, Supplement Series, 2012, 198, 9.	7.7	19
94	SOLAR PHOTOIONIZATION RATES FOR INTERSTELLAR NEUTRALS IN THE INNER HELIOSPHERE: H, He, O, AND Ne. Astrophysical Journal, Supplement Series, 2014, 210, 12.	7.7	19
95	SYMMETRY OF THE <i>IBEX </i> RIBBON OF ENHANCED ENERGETIC NEUTRAL ATOM (ENA) FLUX. Astrophysical Journal, 2015, 799, 68.	4.5	19
96	Solar cycle modulation of the interstellar hydrogen density distribution in the heliosphere. Space Science Reviews, 1995, 72, 467-470.	8.1	18
97	Radiation Pressure from Interstellar Hydrogen Observed by IBEX through Solar Cycle 24. Astrophysical Journal, 2019, 887, 217.	4.5	18
98	Solar Wind Turbulence from 1 to 45 au. I. Evidence for Dissipation of Magnetic Fluctuations Using Voyager and ACE Observations. Astrophysical Journal, 2020, 900, 91.	4.5	18
99	Assessment of detectability of neutral interstellar deuterium by IBEX observations. Astronomy and Astrophysics, 2013, 556, A39.	5.1	17
100	The Heliosphere and Local Interstellar Medium from Neutral Atom Observations at Energies Below 10 keV. Space Science Reviews, 2022, 218, .	8.1	17
101	Magnetic Waves Excited by Newborn Interstellar Pickup Ions Measured by the <i>Voyager</i> Spacecraft from 1 to 45 au. III. Observation Times. Astrophysical Journal, Supplement Series, 2018, 237, 34.	7.7	16
102	Distribution of Interstellar Hydrogen Atoms in the Heliosphere and Backscattered Solar Lyman-α. , 2013, , 7-65.		16
103	Response of the groove in heliospheric Lyman-α glow toÂlatitude-dependent ionization rate. Astronomy and Astrophysics, 2003, 408, 1155-1164.	5.1	16
104	Modelling of the interstellar hydrogen distribution in the heliosphere. Space Science Reviews, 1996, 78, 265-276.	8.1	15
105	Observational study of the cooling behavior of interstellar helium pickup ions in the inner heliosphere. Journal of Geophysical Research: Space Physics, 2013, 118, 3946-3953.	2.4	15
106	Observation of Magnetic Waves Excited by Newborn Interstellar Pickup He+ Observed by the Voyager 2 Spacecraft at 30 au. Astrophysical Journal, 2017, 849, 61.	4.5	15
107	Science Opportunities from Observations of the Interstellar Neutral Gas with Adjustable Boresight Direction. Astrophysical Journal, Supplement Series, 2019, 245, 28.	7.7	15
108	A New 3D Solar Wind Speed and Density Model Based on Interplanetary Scintillation. Astrophysical Journal, Supplement Series, 2022, 259, 2.	7.7	15

#	Article	IF	CITATIONS
109	Response of interplanetary glow to global variations of hydrogen ionization rate and solar Lyman α flux. Journal of Geophysical Research, 2002, 107, SSH 2-1.	3.3	14
110	The Influence of Polar Coronal Holes on the Polar ENA Flux Observed by IBEX. Astrophysical Journal, 2019, 879, 1.	4.5	14
111	Solar Wind Turbulence from 1 to 45 au. II. Analysis of Inertial-range Fluctuations Using Voyager and ACE Observations. Astrophysical Journal, 2020, 900, 92.	4.5	14
112	Signal Processing for the Measurement of the Deuterium/Hydrogen Ratio in the Local Interstellar Medium. Entropy, 2014, 16, 1134-1168.	2.2	13
113	Observations of Low-Frequency Magnetic Waves due to Newborn Interstellar Pickup Ions Using ACE, Ulysses, and Voyager Data. Journal of Physics: Conference Series, 2017, 900, 012018.	0.4	13
114	Distribution Function of Neutral Helium outside and inside the Heliopause. Astrophysical Journal, 2019, 882, 114.	4.5	13
115	EXPLORING THE TIME DISPERSION OF THE <i>IBEX</i> HI ENERGETIC NEUTRAL ATOM SPECTRA AT THE ECLIPTIC POLES. Astrophysical Journal Letters, 2012, 749, L41.	8.3	12
116	Interstellar Gas Flow Vector and Temperature Determination over 5 Years of IBEX Observations. Journal of Physics: Conference Series, 2015, 577, 012019.	0.4	12
117	Temporal Evolution of the Latitude and Energy Dependence of the Energetic Neutral Atom Spectral Indices Measured by the Interstellar Boundary Explorer (IBEX) Over the First Nine Years. Astrophysical Journal, 2019, 875, 91.	4.5	12
118	Interstellar Neutral He Parameters from Crossing Parameter Tubes with the Interstellar Mapping and Acceleration Probe Informed by 10 yr of Interstellar Boundary Explorer Observations. Astrophysical Journal, Supplement Series, 2022, 258, 7.	7.7	12
119	Variability of the neutral hydrogen density distribution due to solar cycle related effects. Advances in Space Research, 1995, 16, 131-134.	2.6	11
120	EXPLORING THE POSSIBILITY OF O AND Ne CONTAMINATION IN <i>ULYSSES</i> OBSERVATIONS OF INTERSTELLAR HELIUM. Astrophysical Journal, Supplement Series, 2015, 220, 31.	7.7	10
121	ASSESSMENT OF ENERGETIC NEUTRAL He ATOM INTENSITIES EXPECTED FROM THE IBEX RIBBON. Astrophysical Journal, 2014, 782, 106.	4.5	9
122	Helium Energetic Neutral Atoms from the Heliosphere: Perspectives for Future Observations. Astrophysical Journal, 2017, 840, 75.	4.5	9
123	WawHelioGlow: A Model of the Heliospheric Backscatter Glow. I. Model Definition. Astrophysical Journal, Supplement Series, 2021, 254, 16.	7.7	9
124	WawHelioGlow: A Model of the Heliospheric Backscatter Glow. II. The Helioglow Buildup and the Potential Significance of the Anisotropy in the Solar EUV Output. Astrophysical Journal, Supplement Series, 2021, 254, 17.	7.7	9
125	UV optical measurements of the Nozomi spacecraft interpreted with a two-component LIC-flow model. Astronomy and Astrophysics, 2008, 491, 29-41.	5.1	9
126	On the Sensitivity of Heliosphere Models to the Uncertainty of the Low-energy Charge Exchange Cross-section. Astrophysical Journal, 2020, 888, 24.	4.5	9

#	ARTICLE	IF	CITATIONS
127	Time Delay between Outer Heliosheath Crossing and Observation of Interstellar Neutral Atoms. Astrophysical Journal, 2020, 901, 12.	4.5	9
128	Whence the Interstellar Magnetic Field Shaping the Heliosphere?. Astrophysical Journal, Supplement Series, 2022, 259, 48.	7.7	9
129	HELIOSPHERIC ENERGETIC NEUTRAL HYDROGEN MEASURED WITH ASPERA-3 AND ASPERA-4. Astrophysical Journal, 2013, 775, 24.	4.5	8
130	Heliospheric Structure as Revealed by the 3–88 keV H ENA Spectra. Astrophysical Journal, 2020, 888, 1.	4.5	8
131	A kinetic control of the heliospheric interface hydrodynamics of charge-exchanging fluids. Astronomy and Astrophysics, 2004, 424, 263-278.	5.1	8
132	Title is missing!. Astrophysics and Space Science, 2000, 274, 133-141.	1.4	7
133	Heavy coronal ions in the heliosphere. Astronomy and Astrophysics, 2013, 549, A76.	5.1	7
134	Heavy coronal ions in the heliosphere. Astronomy and Astrophysics, 2010, 512, A72.	5.1	7
135	Structure of the heliosheath from HSTOF energetic neutral atoms measurements. Astronomy and Astrophysics, 2018, 618, A26.	5.1	5
136	Influence of Heliolatitudinal Anisotropy of Solar FUV/EUV Emissions on Lyα Helioglow: SOHO/SWAN Observations and WawHelioGlow Modeling. Astrophysical Journal Letters, 2021, 919, L18.	8.3	5
137	High-latitude Observations of Inertial-range Turbulence by the Ulysses Spacecraft During the Solar Minimum of 1993–96. Astrophysical Journal, 2022, 927, 43.	4.5	4
138	Low-frequency Waves due to Newborn Interstellar Pickup He ⁺ Observed by the Ulysses Spacecraft. Astrophysical Journal, 2021, 923, 185.	4.5	4
139	A time-dependent, 3D model of interstellar hydrogen distribution in the inner heliosphere. COSPAR Colloquia Series, 2001, , 129-132.	0.2	3
140	Modeling Emission of Heavy Energetic Neutral Atoms from the Heliosphere. Astrophysical Journal, 2017, 846, 128.	4.5	3
141	Inferring Contributions from Unresolved Point Sources to Diffuse Emissions Measured in UV Sky Surveys: General Method and SOHO/SWAN Case Study. Astrophysical Journal, 2020, 899, 48.	4.5	3
142	Absorption of the LyÎ \pm Radiation in the Heliosphere. Astrophysical Journal, 2022, 926, 27.	4.5	3
143	Solar Wind Turbulence from 1 to 45 au. V. Data Intervals from the Voyager Observations. Astrophysical Journal, Supplement Series, 2020, 250, 14.	7.7	2
144	The Local Interstellar Magnetic Field Observed by Voyager 1 and IBEX. Journal of Physics: Conference Series, 2018, 1100, 012021.	0.4	1

#	Article	IF	CITATIONS
145	Energetic Neutral Atoms from the Heliosheath as an Additional Population of Neutral Hydrogen in the Inner Heliosphere. Astrophysical Journal, 2019, 870, 58.	4.5	1