Wang-ping Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9075506/publications.pdf

Version: 2024-02-01

516710 677142 49 675 16 22 citations g-index h-index papers 49 49 49 323 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Electrodeposition of Ir–Co thin films on copper foam as high-performance electrocatalysts for efficient water splitting in alkaline medium. International Journal of Hydrogen Energy, 2021, 46, 609-621.	7.1	39
2	The Effects of pH and Temperature on Electrodeposition of Re-Ir-Ni Coatings from Aqueous Solutions. Journal of the Electrochemical Society, 2015, 162, D20-D26.	2.9	35
3	Microstructure and evolution of iridium coating on the C/C composites ablated by oxyacetylene torch. Acta Astronautica, 2010, 66, 682-687.	3.2	34
4	Texture orientation, morphology and performance of nanocrystalline nickel coatings electrodeposited from a Watts-type bath: Effects of H3BO3 concentration and plating time. Surface and Coatings Technology, 2021, 424, 127648.	4.8	30
5	Tungsten and iridium multilayered structure by DGP as ablation-resistance coatings for graphite. Applied Surface Science, 2011, 257, 7295-7304.	6.1	29
6	Novel electrode material using electroless nickel plating for triboelectric nanogenerator: Study of the relationship between electrostatic-charge density and strain in dielectric material. Nano Energy, 2022, 92, 106734.	16.0	27
7	Microstructural Characterization and Mechanical Property of Iridium Coating Produced by Double Glow Plasma. Plasma Chemistry and Plasma Processing, 2011, 31, 465-475.	2.4	24
8	Effect of plating temperature on electroless amorphous Ni–P film on Si wafers in an alkaline bath solution. Applied Nanoscience (Switzerland), 2017, 7, 325-333.	3.1	24
9	Ir coating prepared on Nb substrate by double glow plasma. International Journal of Refractory Metals and Hard Materials, 2009, 27, 590-594.	3.8	23
10	Ir coating prepared on Mo substrate by double glow plasma. Journal of Coatings Technology Research, 2009, 6, 517-522.	2.5	22
11	Iridium Coating: Processes, Properties and Application. Part I. Johnson Matthey Technology Review, 2017, 61, 16-28.	1.0	22
12	Effect of heat treatment at 1300°C on W coating prepared by double-glow plasma on carbon/carbon composite. Journal of Coatings Technology Research, 2009, 6, 237-241.	2.5	21
13	Effects of bias voltage and gas pressure on orientation and microstructure of iridium coating by double glow plasma. Vacuum, 2011, 86, 429-437.	3. 5	19
14	Electrodeposition of Re-Ni alloys from aqueous solutions with organic additives. Thin Solid Films, 2016, 616, 828-837.	1.8	19
15	Electrodeposition of nickel-iridium alloy films from aqueous solutions. Applied Surface Science, 2018, 434, 307-317.	6.1	19
16	Incorporation graphene into sprayed epoxy–polyamide coating on carbon steel: corrosion resistance properties. Corrosion Engineering Science and Technology, 2018, 53, 625-632.	1.4	19
17	Textile-based triboelectric nanogenerators via electroless plating for fabricating electrode material: Study of the relationship between electrostatic-charge density and strain in dielectric material. Composites Science and Technology, 2022, 218, 109187.	7.8	19
18	Oxidation Resistance Coatings of Ir–Zr and Ir by Double Glow Plasma. Journal of Materials Science and Technology, 2014, 30, 268-274.	10.7	14

#	Article	IF	CITATIONS
19	Effect of Electroplating Variables on Electrodeposition of Ni Rich Ni-Ir Alloys from Citrate Aqueous Solutions. Journal of the Electrochemical Society, 2017, 164, D985-D993.	2.9	14
20	Electrochemical characteristics of iridium coating by double glow plasma discharge process on titanium alloy substrates. Surface Engineering, 2019, 35, 954-961.	2.2	14
21	Oxidation behavior of multilayer iridium coating on niobium substrate. Protection of Metals and Physical Chemistry of Surfaces, 2015, 51, 607-612.	1.1	13
22	Effect of gelatin additive on microstructure and composition of electrodeposited rhenium–nickel alloys in aqueous solutions. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	2.3	13
23	Ablation behavior of monolayer and multilayer Ir coatings under carburizing and oxidizing oxyacetylene flames. Acta Astronautica, 2016, 123, 1-7.	3.2	13
24	Iridium Coating: Processes, Properties and Application. Part II. Johnson Matthey Technology Review, 2017, 61, 93-110.	1.0	13
25	The influence of current density and bath temperature on electrodeposition of rhodium film from sulfate–phosphate aqueous solutions. Journal of Applied Electrochemistry, 2019, 49, 1043-1054.	2.9	13
26	Ni3S2/rGO nanoparticles ensemble by an in-situ microwave irradiation route for supercapacitors. Journal of Alloys and Compounds, 2022, 890, 161435.	5.5	13
27	Electrodeposition and Thermal Stability of Re ₆₀ Ni ₄₀ Amorphous Alloy. Electrochemistry, 2016, 84, 699-704.	1.4	12
28	Galvanostatic Electrodeposition of Thin-Film Ir–Ni Electrocatalyst on Copper Foam for HER Performance in Alkaline Electrolyte. Catalysis Letters, 2020, 150, 1325-1336.	2.6	11
29	EBSD study of (110) orientation of iridium (Ir) coating on niobium (Nb) substrate by double glow plasma. Nuclear Instruments & Methods in Physics Research B, 2013, 307, 315-319.	1.4	10
30	Micropore formation mechanism in iridium coating after highâ€temperature treatment. Surface and Interface Analysis, 2016, 48, 353-359.	1.8	10
31	Fracture In Polycrystalline Iridium Coating. International Journal of Fracture, 2008, 153, 185-190.	2.2	9
32	Iridium Coating Deposited by Double Glow Plasma Technique â€" Effect of Glow Plasma on Structure of Coating at Single Substrate Edge. Plasma Science and Technology, 2012, 14, 909-914.	1.5	9
33	Preparation and Characterization of Ir Coating on WC Ceramic by Double Glow Plasma. Journal of Materials Engineering and Performance, 2012, 21, 2085-2089.	2.5	9
34	Morphology and mechanical characteristics of monolayer and multilayer Ir coating by double glow plasma. Journal Wuhan University of Technology, Materials Science Edition, 2017, 32, 190-196.	1.0	9
35	Influence of thiourea on electroless Ni–P films deposited on silicon substrates. Journal of Materials Science: Materials in Electronics, 2019, 30, 7717-7724.	2.2	9
36	Corrosion failure analysis of Ni-P film of aircraft fire detector components. Engineering Failure Analysis, 2020, 111, 104497.	4.0	9

#	Article	IF	CITATIONS
37	Adhesion enhancement for nickel layer deposited on carbon fiber reinforced polymer (CFRP) composites by pretreatment processes for lightning strike. Journal of Adhesion, 2023, 99, 1099-1122.	3.0	6
38	Influences of Bath Chemistry and Plating Variables on Characteristics of Electroless Ni–P Films on Si Wafers from Alkaline Citrate Solutions. Journal of Nanomaterials, 2018, 2018, 1-11.	2.7	4
39	Sodium hexabromoiridate(III) for the electroplating of Ir–Ni and Ir–Re–Ni alloy coatings. Thin Solid Films, 2022, 755, 139323.	1.8	4
40	Preparation of Strongly Adherent Platinum Coating by Double Glow Plasma Technology. Journal of Adhesion Science and Technology, 2012, 26, 1705-1715.	2.6	3
41	Ir protective coatings for carbon structural materials. Journal Wuhan University of Technology, Materials Science Edition, 2012, 27, 652-656.	1.0	3
42	Mechanical and electrochemical properties of platinum coating by double glow plasma on titanium alloy substrate. Russian Journal of Electrochemistry, 2013, 49, 76-80.	0.9	3
43	Fracture failure analysis of 4Cr13 stainless steel linkages in circuit breakers. Case Studies in Engineering Failure Analysis, 2016, 5-6, 23-29.	1.2	3
44	Microstructure and Friction-Wear Behavior of Multi-arc Ion Plating TiAlNC Ceramic Coating on WC-6%Co Substrate. Journal of Materials Engineering and Performance, 2018, 27, 4665-4671.	2.5	3
45	Electrodeposition of Silver–Graphene Films for Electronic Connectors in Succinimide Solutions. Surface Engineering and Applied Electrochemistry, 2021, 57, 75-87.	0.8	3
46	Investigation of Tribological and Corrosion Properties of Carbon Nanotube Reinforced Chemically Bonded Phosphate Ceramic Coatings. ECS Journal of Solid State Science and Technology, 2022, 11, 071008.	1.8	1
47	Failure Analysis of Leakage Current for Multilayer Printed Circuit Board. Journal of Failure Analysis and Prevention, 2020, 20, 1621-1627.	0.9	0
48	Microstructure and Corrosion Resistance of Fusion Welding Zone for Duplextubes Welded with Q345R Tube Sheet under Different Welding Currents. Metals, 2022, 12, 705.	2.3	0
49	Electrochemical Corrosion Behavior of 18Ni 300 Maraging Steel Obtained byÂLaser Cladding Deposition and Selective Laser Melting in Corrosive Mediums: A Comparative Study. Journal of Materials Engineering and Performance, 0, , .	2.5	0