
Carolina I Font I Forcada

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9075499/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Genetic architecture and genomic predictive ability of apple quantitative traits across environments. Horticulture Research, 2022, 9, .	6.3	20
2	Effect of Genetics and Climate on Apple Sugars and Organic Acids Profiles. Agronomy, 2022, 12, 827.	3.0	13
3	Biochemical Characterization and Differential Expression of PAL Genes Associated With "Translocated―Peach/Plum Graft-Incompatibility. Frontiers in Plant Science, 2021, 12, 622578.	3.6	16
4	Genetic origin and climate determine fruit quality and antioxidant traits on apple (Malus x domestica) Tj ETQq0	0 0 ggBT /	Overlock 10 T
5	TERRAM and LUX Series: Four Yellow-fleshed and Three White-fleshed Peaches. Hortscience: A Publication of the American Society for Hortcultural Science, 2021, 56, 1132-1133.	1.0	2
6	MAGNA and BLANQ Series: Two Yellow-fleshed and Three White-fleshed Nectarines. Hortscience: A Publication of the American Society for Hortcultural Science, 2021, 56, 1130-1131.	1.0	1
7	The apple REFPOP—a reference population for genomics-assisted breeding in apple. Horticulture Research, 2020, 7, 189.	6.3	37
8	Scion × Rootstock Response on Production, Mineral Composition and Fruit Quality under Heavy-Calcareous Soil and Hot Climate. Agronomy, 2020, 10, 1159.	3.0	25
9	Long-term graft compatibility study of peach-almond hybrid and plum based rootstocks budded with European and Japanese plums. Scientia Horticulturae, 2019, 243, 392-400.	3.6	23
10	Sugars and organic acids profile and antioxidant compounds of nectarine fruits influenced by different rootstocks. Scientia Horticulturae, 2019, 248, 145-153.	3.6	35
11	Potential of new Prunus cerasifera based rootstocks for adapting under heavy and calcareous soil conditions. Scientia Horticulturae, 2018, 234, 193-200.	3.6	14
12	Anatomical graft compatibility study between apricot cultivars and different plum based rootstocks. Scientia Horticulturae, 2018, 237, 67-73.	3.6	22
13	Horticultural, leaf mineral and fruit quality traits of two â€ [~] Greengage' plum cultivars budded on plum based rootstocks in Mediterranean conditions. Scientia Horticulturae, 2018, 232, 84-91.	3.6	35
14	Biochemical analyses and expression of cold transcription factors of the late PDO â€~Calanda' peach under different post-harvest conditions. Scientia Horticulturae, 2018, 238, 116-125.	3.6	3
15	Association Mapping Analysis for Fruit Quality Traits in Prunus persica Using SNP Markers. Frontiers in Plant Science, 2018, 9, 2005.	3.6	30
16	Effect of eight different rootstocks on agronomic and fruit quality parameters of two sweet cherry cultivars in Mediterranean conditions. Acta Horticulturae, 2017, , 315-320.	0.2	6
17	ldentification of Genetic Loci Associated with Quality Traits in Almond via Association Mapping. PLoS ONE, 2015, 10, e0127656.	2.5	36
18	Discovery of non-climacteric and suppressed climacteric bud sport mutations originating from a climacteric Japanese plum cultivar (Prunus salicina Lindl.). Frontiers in Plant Science, 2015, 6, 316.	3.6	72

CAROLINA | FONT | FORCADA

#	Article	IF	CITATIONS
19	Association mapping for kernel phytosterol content in almond. Frontiers in Plant Science, 2015, 6, 530.	3.6	20
20	Genetic relationships and population structure of local olive tree accessions from Northeastern Spain revealed by SSR markers. Acta Physiologiae Plantarum, 2015, 37, 1.	2.1	27
21	Molecular analyses of evolution and population structure in a worldwide almond [Prunus dulcis (Mill.) D.A. Webb syn. P. amygdalus Batsch] pool assessed by microsatellite markers. Genetic Resources and Crop Evolution, 2015, 62, 205-219.	1.6	21
22	Resistance to Downy Mildew in Lettuce â€~La Brillante' is Conferred by <i>Dm50</i> Gene and Multiple QTL. Phytopathology, 2015, 105, 1220-1228.	2.2	20
23	MAPPING QTLS FOR NUT AND KERNEL TRAITS IN ALMOND. Acta Horticulturae, 2014, , 49-52.	0.2	0
24	Agronomical Parameters, Sugar Profile and Antioxidant Compounds of "Catherine―Peach Cultivar Influenced by Different Plum Rootstocks. International Journal of Molecular Sciences, 2014, 15, 2237-2254.	4.1	33
25	Phenotypic diversity among local Spanish and foreign peach and nectarine [Prunus persica (L.) Batsch] accessions. Euphytica, 2014, 197, 261-277.	1.2	48
26	POMOLOGICAL AND BIOCHEMICAL CHARACTERIZATION OF TWO TURKISH ALMOND CULTIVARS GROWN IN THE ANATOLIA REGION. Acta Horticulturae, 2014, , 239-242.	0.2	0
27	Population structure and marker–trait associations for pomological traits in peach and nectarine cultivars. Tree Genetics and Genomes, 2013, 9, 331-349.	1.6	65
28	Genetic analysis for physical nut traits in almond. Tree Genetics and Genomes, 2013, 9, 455-465.	1.6	24
29	Fruit sugar profile and antioxidants of peach and nectarine cultivars on almond×peach hybrid rootstocks. Scientia Horticulturae, 2013, 164, 563-572.	3.6	27
30	Genetic Diversity and Relatedness of Sweet Cherry (Prunus Avium L.) Cultivars Based on Single Nucleotide Polymorphic Markers. Frontiers in Plant Science, 2012, 3, 116.	3.6	40
31	Agronomical and fruit quality traits of two peach cultivars on peach-almond hybrid rootstocks growing on Mediterranean conditions. Scientia Horticulturae, 2012, 140, 157-163.	3.6	41
32	Mapping quantitative trait loci for kernel composition in almond. BMC Genetics, 2012, 13, 47.	2.7	34
33	EFFECT OF ALMOND × PEACH HYBRID ROOTSTOCKS ON FRUIT QUALITY PARAMETERS AND YIELD CHARACTERISTICS OF PEACH CULTIVARS. Acta Horticulturae, 2012, , 599-603.	0.2	4
34	EVALUATION OF THE HERITABILITY OF THE CHEMICAL COMPONENTS OF THE ALMOND (PRUNUS AMYGDALUS)	Tj ETQq0	0 g rgBT /Ove

35	Genetic variability and pollen effect on the transmission of the chemical components of the almond kernel. Spanish Journal of Agricultural Research, 2011, 9, 781.	C).6	24
----	--	---	-----	----