
Johannes Boltze

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9075268/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Update of the Stroke Therapy Academic Industry Roundtable Preclinical Recommendations. Stroke, 2009, 40, 2244-2250.	1.0	1,136
2	Concise Review: MSC Adhesion Cascade—Insights into Homing and Transendothelial Migration. Stem Cells, 2017, 35, 1446-1460.	1.4	275
3	Inhalation of Nitric Oxide Prevents Ischemic Brain Damage in Experimental Stroke by Selective Dilatation of Collateral Arterioles. Circulation Research, 2012, 110, 727-738.	2.0	163
4	The cerebral embolism evoked by intra-arterial delivery of allogeneic bone marrow mesenchymal stem cells in rats is related to cell dose and infusion velocity. Stem Cell Research and Therapy, 2015, 6, 11.	2.4	153
5	Stem Cells as an Emerging Paradigm in Stroke 3. Stroke, 2014, 45, 634-639.	1.0	141
6	Spontaneous white matter damage, cognitive decline and neuroinflammation in middle-aged hypertensive rats: an animal model of early-stage cerebral small vessel disease. Acta Neuropathologica Communications, 2014, 2, 169.	2.4	130
7	The dark side of the force – constraints and complications of cell therapies for stroke. Frontiers in Neurology, 2015, 6, 155.	1.1	124
8	Stroke Treatment Academic Industry Roundtable X. Stroke, 2019, 50, 1026-1031.	1.0	120
9	Transplantation of placenta-derived mesenchymal stromal cells upon experimental stroke in rats. Brain Research, 2010, 1315, 128-136.	1.1	112
10	Density Gradient Centrifugation Compromises Bone Marrow Mononuclear Cell Yield. PLoS ONE, 2012, 7, e50293.	1.1	105
11	Current and emerging avenues for Alzheimer's disease drug targets. Journal of Internal Medicine, 2019, 286, 398-437.	2.7	102
12	Immunosuppression for in vivo research: state-of-the-art protocols and experimental approaches. Cellular and Molecular Immunology, 2017, 14, 146-179.	4.8	99
13	A Concerted Appeal for International Cooperation in Preclinical Stroke Research. Stroke, 2013, 44, 1754-1760.	1.0	94
14	Permanent Middle Cerebral Artery Occlusion in Sheep: A Novel Large Animal Model of Focal Cerebral Ischemia. Journal of Cerebral Blood Flow and Metabolism, 2008, 28, 1951-1964.	2.4	88
15	Stem Cell–Based Tissue Replacement After Stroke. Stroke, 2015, 46, 2354-2363.	1.0	80
16	Top Priorities for Cerebroprotective Studies—A Paradigm Shift: Report From STAIR XI. Stroke, 2021, 52, 3063-3071.	1.0	78
17	Translational models for vascular cognitive impairment: a review including larger species. BMC Medicine, 2017, 15, 16.	2.3	71
18	Long-Term Benefit of Human Fetal Neuronal Progenitor Cell Transplantation in a Clinically Adapted Model after Traumatic Brain Injury. Journal of Neurotrauma, 2011, 28, 401-414.	1.7	69

#	Article	IF	CITATIONS
19	Behavioral outcome measures to improve experimental stroke research. Behavioural Brain Research, 2018, 352, 161-171.	1.2	68
20	Stem Cells as an Emerging Paradigm in Stroke 4. Stroke, 2019, 50, 3299-3306.	1.0	68
21	Multimodal Approaches for Regenerative Stroke Therapies: Combination of Granulocyte Colony-Stimulating Factor with Bone Marrow Mesenchymal Stem Cells is Not Superior to G-CSF Alone. Frontiers in Aging Neuroscience, 2014, 6, 130.	1.7	66
22	Dental Pulp Stem Cells: An Attractive Alternative for Cell Therapy in Ischemic Stroke. Frontiers in Neurology, 2019, 10, 824.	1.1	65
23	The role of gene DCDC2 in German dyslexics. Annals of Dyslexia, 2009, 59, 1-11.	1.2	64
24	Determination of the Therapeutic Time Window for Human Umbilical Cord Blood Mononuclear Cell Transplantation following Experimental Stroke in Rats. Cell Transplantation, 2012, 21, 1199-1211.	1.2	62
25	Assessment of Neuroprotective Effects of Human Umbilical Cord Blood Mononuclear Cell Subpopulations In Vitro and in Vivo. Cell Transplantation, 2012, 21, 723-737.	1.2	60
26	Large animals in neurointerventional research: A systematic review on models, techniques and their application in endovascular procedures for stroke, aneurysms and vascular malformations. Journal of Cerebral Blood Flow and Metabolism, 2019, 39, 375-394.	2.4	60
27	A stereotaxic, population-averaged T1w ovine brain atlas including cerebral morphology and tissue volumes. Frontiers in Neuroanatomy, 2015, 9, 69.	0.9	59
28	Simultaneous PET/Mri in Stroke: A Case Series. Journal of Cerebral Blood Flow and Metabolism, 2015, 35, 1421-1425.	2.4	57
29	Detection and Quantification of β-Amyloid, Pyroglutamyl Aβ, and Tau in Aged Canines. Journal of Neuropathology and Experimental Neurology, 2015, 74, 912-923.	0.9	56
30	Isolation and Flow Cytometric Analysis of Immune Cells from the Ischemic Mouse Brain. Journal of Visualized Experiments, 2016, , 53658.	0.2	54
31	Mesenchymal Stromal Cells in Stroke: Improvement of Motor Recovery or Functional Compensation?. Journal of Cerebral Blood Flow and Metabolism, 2014, 34, 1420-1421.	2.4	53
32	A stereotaxic breed-averaged, symmetric T2w canine brain atlas including detailed morphological and volumetrical data sets. NeuroImage, 2019, 187, 93-103.	2.1	50
33	Evidence for neuroprotective properties of human umbilical cord blood cells after neuronal hypoxia in vitro. BMC Neuroscience, 2008, 9, 30.	0.8	49
34	Cleaved caspase-3 expression after experimental stroke exhibits different phenotypes and is predominantly non-apoptotic. Brain Research, 2011, 1381, 237-242.	1.1	48
35	Cell therapy for ischemic stroke: Are differences in preclinical and clinical study design responsible for the translational loss of efficacy?. Annals of Neurology, 2019, 86, 5-16.	2.8	47
36	Bone Marrow Mononuclear Cells Activate Angiogenesis via Gap Junction–Mediated Cell-Cell Interaction. Stroke, 2020, 51, 1279-1289.	1.0	47

#	Article	IF	CITATIONS
37	Transplantation of Cryopreserved Human Umbilical Cord Blood Mononuclear Cells Does Not Induce Sustained Recovery after Experimental Stroke in Spontaneously Hypertensive Rats. Journal of Cerebral Blood Flow and Metabolism, 2014, 34, e1-e9.	2.4	45
38	Imaging genetics of FOXP2 in dyslexia. European Journal of Human Genetics, 2012, 20, 224-229.	1.4	44
39	Integrin α4 Overexpression on Rat Mesenchymal Stem Cells Enhances Transmigration and Reduces Cerebral Embolism After Intracarotid Injection. Stroke, 2017, 48, 2895-2900.	1.0	44
40	Autologous Umbilical Cord Blood Mononuclear Cell Transplantation Preserves Right Ventricular Function in a Novel Model of Chronic Right Ventricular Volume Overload. Cell Transplantation, 2009, 18, 855-868.	1.2	43
41	The emergence of dyslexia in the developing brain. NeuroImage, 2020, 211, 116633.	2.1	43
42	Predicting early signs of dyslexia at a preliterate age by combining behavioral assessment with structural MRI. NeuroImage, 2016, 143, 378-386.	2.1	41
43	Genetic dyslexia risk variant is related to neural connectivity patterns underlying phonological awareness in children. NeuroImage, 2015, 118, 414-421.	2.1	40
44	Infarction of the Corpus Callosum: A Retrospective Clinical Investigation. PLoS ONE, 2015, 10, e0120409.	1.1	39
45	Novel targets, treatments, and advanced models for intracerebral haemorrhage. EBioMedicine, 2022, 76, 103880.	2.7	39
46	<i>NRSN1</i> associated grey matter volume of the visual word form area reveals dyslexia before school. Brain, 2016, 139, 2792-2803.	3.7	38
47	Improved prediction of complex diseases by common genetic markers: state of the art and further perspectives. Human Genetics, 2016, 135, 259-272.	1.8	37
48	Dyslexia risk gene relates to representation of sound in the auditory brainstem. Developmental Cognitive Neuroscience, 2017, 24, 63-71.	1.9	37
49	Comparison of Large Animal Models for Acute Ischemic Stroke: Which Model to Use?. Stroke, 2022, 53, 1411-1422.	1.0	36
50	<scp>CXCR</scp> 4 and <scp>CXCR</scp> 7 form a functional receptor unit for <scp>SDF</scp> â€1/ <scp>CXCL</scp> 12 in primary rodent microglia. Neuropathology and Applied Neurobiology, 2013, 39, 667-680.	1.8	34
51	Intravenous human umbilical cord blood transplantation for stroke: Impact on infarct volume and caspase-3-dependent cell death in spontaneously hypertensive rats. Experimental Neurology, 2011, 227, 218-223.	2.0	32
52	Sterile Inflammation after Permanent Distal MCA Occlusion in Hypertensive Rats. Journal of Cerebral Blood Flow and Metabolism, 2014, 34, 307-315.	2.4	32
53	Neuronal hypoxia in vitro: Investigation of therapeutic principles of HUCB-MNC and CD133+stem cells. BMC Neuroscience, 2008, 9, 91.	0.8	30
54	Concise Review: Increasing the Validity of Cerebrovascular Disease Models and Experimental Methods for Translational Stem Cell Research. Stem Cells, 2017, 35, 1141-1153.	1.4	30

#	Article	IF	CITATIONS
55	Skin-Derived Stem Cells for Wound Treatment Using Cultured Epidermal Autografts: Clinical Applications and Challenges. Stem Cells International, 2018, 2018, 1-9.	1.2	29
56	The Ovine Cerebral Venous System: Comparative Anatomy, Visualization, and Implications for Translational Research. PLoS ONE, 2014, 9, e92990.	1.1	27
57	Future of Animal Modeling for Poststroke Tissue Repair. Stroke, 2018, 49, 1099-1106.	1.0	27
58	Triple fluorescence labelling of neuronal, glial and vascular markers revealing pathological alterations in various animal models. Journal of Chemical Neuroanatomy, 2009, 37, 128-138.	1.0	26
59	Impact of Magnetic Labeling on Human and Mouse Stem Cells and Their Long-Term Magnetic Resonance Tracking in a Rat Model of Parkinson Disease. Molecular Imaging, 2009, 8, 7290.2009.00017.	0.7	26
60	STAIR X. Stroke, 2018, 49, 2241-2247.	1.0	26
61	Arterial Hypertension Aggravates Innate Immune Responses after Experimental Stroke. Frontiers in Cellular Neuroscience, 2015, 9, 461.	1.8	25
62	Phase III Preclinical Trials in Translational Stroke Research: Community Response on Framework and Guidelines. Translational Stroke Research, 2016, 7, 241-247.	2.3	25
63	Strategies for Improved Intra-arterial Treatments Targeting Brain Tumors: a Systematic Review. Frontiers in Oncology, 2020, 10, 1443.	1.3	25
64	Object-based analysis of astroglial reaction and astrocyte subtype morphology after ischemic brain injury. Acta Neurobiologiae Experimentalis, 2013, 73, 79-87.	0.4	25
65	Gap Junction-Mediated Cell-Cell Interaction Between Transplanted Mesenchymal Stem Cells and Vascular Endothelium in Stroke. Stem Cells, 2021, 39, 904-912.	1.4	24
66	Impact of age on the efficacy of bone marrow mononuclear cell transplantation in experimental stroke. Experimental & Translational Stroke Medicine, 2012, 4, 17.	3.2	23
67	Stroke Treatment Academic Industry Roundtable. Stroke, 2013, 44, 3596-3601.	1.0	23
68	Working-memory endophenotype and dyslexia-associated genetic variant predict dyslexia phenotype. Cortex, 2015, 71, 291-305.	1.1	23
69	The role of SUMOylation in cerebral hypoxia and ischemia. Neurochemistry International, 2017, 107, 66-77.	1.9	23
70	Translation, but not transfection limits clinically relevant, exogenous mRNA based induction of alpha-4 integrin expression on human mesenchymal stem cells. Scientific Reports, 2017, 7, 1103.	1.6	23
71	Sulfur mustard skin lesions: A systematic review on pathomechanisms, treatment options and future research directions. Toxicology Letters, 2018, 293, 82-90.	0.4	23
72	Early outcome and blood-brain barrier integrity after co-administered thrombolysis and hyperbaric oxygenation in experimental stroke. Experimental & Translational Stroke Medicine, 2011, 3, 5.	3.2	21

#	Article	IF	CITATIONS
73	Changes in T2 relaxation time after stroke reflect clearing processes. NeuroImage, 2012, 61, 780-785.	2.1	21
74	Intravenous Human Umbilical Cord-Derived Mesenchymal Stromal Cell Administration in Models of Moderate and Severe Intracerebral Hemorrhage. Stem Cells and Development, 2020, 29, 586-598.	1.1	21
75	Bone Marrow Cell Transplantation Time-Dependently Abolishes Efficacy of Granulocyte Colony-Stimulating Factor After Stroke in Hypertensive Rats. Stroke, 2014, 45, 2431-2437.	1.0	20
76	Clumping and Viability of Bone Marrow Derived Mesenchymal Stromal Cells under Different Preparation Procedures: A Flow Cytometry-Based In Vitro Study. Stem Cells International, 2016, 2016, 1-8.	1.2	20
77	Fully automated calculation of image-derived input function in simultaneous PET/MRI in a sheep model. EJNMMI Physics, 2016, 3, 2.	1.3	20
78	Astrocytic Mitochondrial Membrane Hyperpolarization following Extended Oxygen and Glucose Deprivation. PLoS ONE, 2014, 9, e90697.	1.1	20
79	Impact of magnetic labeling on human and mouse stem cells and their long-term magnetic resonance tracking in a rat model of Parkinson disease. Molecular Imaging, 2009, 8, 166-78.	0.7	20
80	Cortical differences in preliterate children at familiar risk of dyslexia are similar to those observed in dyslexic readers. Brain, 2015, 138, e378-e378.	3.7	19
81	Histopathological Investigation of Different MCAO Modalities and Impact of Autologous Bone Marrow Mononuclear Cell Administration in an Ovine Stroke Model. Translational Stroke Research, 2011, 2, 279-93.	2.3	18
82	Bone marrow-derived mononuclear cells do not exert acute neuroprotection after stroke in spontaneously hypertensive rats. Frontiers in Cellular Neuroscience, 2014, 7, 288.	1.8	17
83	High-dosage granulocyte colony stimulating factor treatment alters monocyte trafficking to the brain after experimental stroke. Brain, Behavior, and Immunity, 2017, 60, 15-26.	2.0	17
84	Early neutrophil count relates to infarct size and fatal outcome after large hemispheric infarction. CNS Neuroscience and Therapeutics, 2020, 26, 829-836.	1.9	17
85	New Mechanistic Insights, Novel Treatment Paradigms, and Clinical Progress in Cerebrovascular Diseases. Frontiers in Aging Neuroscience, 2021, 13, 623751.	1.7	17
86	Challenges and Controversies in Translational Stroke ResearchÂ- an Introduction. Translational Stroke Research, 2016, 7, 355-357.	2.3	16
87	Recent progress in translational research on neurovascular and neurodegenerative disorders. Restorative Neurology and Neuroscience, 2017, 35, 87-103.	0.4	16
88	Astrocytic expression of the CXCL12 receptor, CXCR7/ACKR3 is a hallmark of the diseased, but not developing CNS. Molecular and Cellular Neurosciences, 2017, 85, 105-118.	1.0	16
89	Induction of immunological tolerance to myelinogenic glial-restricted progenitor allografts. Brain, 2019, 142, 3456-3472.	3.7	15
90	Lesional and perilesional tissue characterization by automated image processing in a novel gyrencephalic animal model of peracute intracerebral hemorrhage. Journal of Cerebral Blood Flow and Metabolism, 2019, 39, 2521-2535.	2.4	15

#	Article	IF	CITATIONS
91	Acute Stroke Imaging Research Roadmap IV: Imaging Selection and Outcomes in Acute Stroke Clinical Trials and Practice. Stroke, 2021, 52, 2723-2733.	1.0	15
92	Experimental treatment of stroke in spontaneously hypertensive rats by CD34+ and CD34- cord blood cells. GMS German Medical Science, 2005, 3, Doc09.	2.7	15
93	Adenosine A1R/A3R (Adenosine A1 and A3 Receptor) Agonist AST-004 Reduces Brain Infarction in a Nonhuman Primate Model of Stroke. Stroke, 2022, 53, 238-248.	1.0	15
94	No juvenile arterial hypertension in sheep multiples despite reduced nephron numbers. Pediatric Nephrology, 2010, 25, 1653-1661.	0.9	14
95	Association study of a functional genetic variant in KIAA0319 in German dyslexics. Psychiatric Genetics, 2012, 22, 216-217.	0.6	14
96	Isolation of inflammatory cells from rat brain tissue after stroke. Experimental & Translational Stroke Medicine, 2012, 4, 20.	3.2	14
97	Neurovascular pathophysiology in cerebral ischemia, dementia and the ageing brain – current trends in basic, translational and clinical research. Experimental & Translational Stroke Medicine, 2012, 4, 14.	3.2	14
98	Transient but not permanent benefit of neuronal progenitor cell therapy after traumatic brain injury: potential causes and translational consequences. Frontiers in Cellular Neuroscience, 2014, 8, 318.	1.8	14
99	Association, characterisation and meta-analysis of SNPs linked to general reading ability in a German dyslexia case-control cohort. Scientific Reports, 2016, 6, 27901.	1.6	14
100	NCAM regulates temporal specification of neural progenitor cells via profilin2 during corticogenesis. Journal of Cell Biology, 2020, 219, .	2.3	14
101	Selective intra-carotid blood cooling in acute ischemic stroke: A safety and feasibility study in an ovine stroke model. Journal of Cerebral Blood Flow and Metabolism, 2021, 41, 3097-3110.	2.4	14
102	Bone Marrow Mesenchymal Stem Cells Exert Protective Effects After Ischemic Stroke Through Upregulation of Glutathione. Stem Cell Reviews and Reports, 2022, 18, 585-594.	1.7	14
103	Imaging of VSOP Labeled Stem Cells in Agarose Phantoms with Susceptibility Weighted and T2* Weighted MR Imaging at 3T: Determination of the Detection Limit. PLoS ONE, 2013, 8, e62644.	1.1	14
104	The Stairway: A Novel Behavioral Test Detecting Sensomotoric Stroke Deficits in Rats. Artificial Organs, 2006, 30, 756-763.	1.0	13
105	Characterization of murine non-adherent bone marrow cells leading to recovery of endogenous hematopoiesis. Cellular and Molecular Life Sciences, 2010, 67, 4095-4106.	2.4	13
106	Stroke Treatment Academic Industry Roundtable Recommendations for Individual Data Pooling Analyses in Stroke. Stroke, 2016, 47, 2154-2159.	1.0	13
107	Granulocyte Colony-stimulating Factor and Bone Marrow Mononuclear Cells for Stroke Treatment in the Aged Brain. Current Neurovascular Research, 2015, 12, 155-162.	0.4	13
108	Oxidative Stress-induced Autophagy Compromises Stem Cell Viability. Stem Cells, 2022, 40, 468-478.	1.4	13

#	Article	IF	CITATIONS
109	Temporal Dynamics of Glyoxalase 1 in Secondary Neuronal Injury. PLoS ONE, 2014, 9, e87364.	1.1	12
110	Flow cytometric characterization of brain dendritic cell subsets after murine stroke. Experimental & Translational Stroke Medicine, 2014, 6, 11.	3.2	12
111	Academic-industry Collaborations in Translational Stroke Research. Translational Stroke Research, 2016, 7, 343-353.	2.3	12
112	Early cortical surface plasticity relates to basic mathematical learning. NeuroImage, 2020, 204, 116235.	2.1	12
113	Intravenous Bone Marrow Mononuclear Cells Transplantation in Aged Mice Increases Transcription of Glucose Transporter 1 and Na+/K+-ATPase at Hippocampus Followed by Restored Neurological Functions. Frontiers in Aging Neuroscience, 2020, 12, 170.	1.7	12
114	Allometric Dose Retranslation Unveiled Substantial Immunological Side Effects of Granulocyte Colony–Stimulating Factor After Stroke. Stroke, 2014, 45, 623-626.	1.0	11
115	Quality and validity of large animal experiments in stroke: A systematic review. Journal of Cerebral Blood Flow and Metabolism, 2020, 40, 2152-2164.	2.4	11
116	Cord Blood Cell Therapy Alters LV Remodeling and Cytokine Expression but does not Improve Heart Function after Myocardial Infarction in Rats. Cellular Physiology and Biochemistry, 2008, 21, 395-408.	1.1	10
117	Pressure-volume loops: feasible for the evaluation of right ventricular function in an experimental model of acute pulmonary regurgitation?. Interactive Cardiovascular and Thoracic Surgery, 2009, 9, 163-168.	0.5	10
118	Preclinical Phase III Trials in Translational Stroke Research. Stroke, 2014, 45, 357-357.	1.0	10
119	Neuronal Stem Cell and Drug Interactions: A Systematic Review and Meta-Analysis: Concise Review. Stem Cells Translational Medicine, 2019, 8, 1202-1211.	1.6	9
120	Clot-Derived Contaminants in Transplanted Bone Marrow Mononuclear Cells Impair the Therapeutic Effect in Stroke. Stroke, 2019, 50, 2883-2891.	1.0	9
121	Infarct Evolution in a Large Animal Model of Middle Cerebral Artery Occlusion. Translational Stroke Research, 2020, 11, 468-480.	2.3	9
122	Hypothesis and Theory: A Pathophysiological Concept of Stroke-Induced Acute Phase Response and Increased Intestinal Permeability Leading to Secondary Brain Damage. Frontiers in Neuroscience, 2020, 14, 272.	1.4	9
123	Circadian effects on stroke outcome – Did we not wake up in time for neuroprotection?. Journal of Cerebral Blood Flow and Metabolism, 2021, 41, 684-686.	2.4	9
124	Granulocyte colony-stimulating factor (G-CSF) treatment in combination with transplantation of bone marrow cells is not superior to G-CSF treatment alone after cortical stroke in spontaneously hypertensive rats. Frontiers in Cellular Neuroscience, 2014, 8, 411.	1.8	8
125	Genetic risk variants for dyslexia on chromosome 18 in a German cohort. Genes, Brain and Behavior, 2014, 13, 350-356.	1.1	8
126	<i><scp>ATP</scp>2C2</i> and <i><scp>DYX</scp>1C1</i> are putative modulators of dyslexiaâ€related MMR. Brain and Behavior, 2017, 7, e00851.	1.0	8

#	Article	IF	CITATIONS
127	Development of a Routinely Applicable Imaging Protocol for Fast and Precise Middle Cerebral Artery Occlusion Assessment and Perfusion Deficit Measure in an Ovine Stroke Model: A Case Study. Frontiers in Neurology, 2019, 10, 1113.	1.1	8
128	Continuous adenosine A2A receptor antagonism after focal cerebral ischemia in spontaneously hypertensive rats. Naunyn-Schmiedeberg's Archives of Pharmacology, 2014, 387, 165-173.	1.4	7
129	Towards Improved Translational Stroke Research. Stroke, 2017, 48, 2341-2342.	1.0	7
130	Increased RNA Transcription of Energy Source Transporters in Circulating White Blood Cells of Aged Mice. Frontiers in Aging Neuroscience, 2022, 14, 759159.	1.7	7
131	A Safe and Effective Magnetic Labeling Protocol for MRI-Based Tracking of Human Adult Neural Stem Cells. Frontiers in Neuroscience, 2019, 13, 1092.	1.4	6
132	Effects of pulmonary artery banding in doxorubicin-induced left ventricular cardiomyopathy. Journal of Thoracic and Cardiovascular Surgery, 2019, 157, 2416-2428.e4.	0.4	6
133	Focal Cerebral Ischemia by Permanent Middle Cerebral Artery Occlusion in Sheep: Surgical Technique, Clinical Imaging, and Histopathological Results. Neuromethods, 2016, , 195-225.	0.2	6
134	Frameless Stereotaxy in Sheep - Neurosurgical and Imaging Techniques for Translational Stroke Research. , 0, , .		6
135	Perioperative stroke: A perspective on challenges and opportunities for experimental treatment and diagnostic strategies. CNS Neuroscience and Therapeutics, 2022, 28, 497-509.	1.9	6
136	Positive LGI1 Antibodies in CSF and Relapse Relate to Worse Outcome in Anti-LGI1 Encephalitis. Frontiers in Immunology, 2021, 12, 772096.	2.2	6
137	Focused Update on Stroke Neuroimmunology: Current Progress in Preclinical and Clinical Research and Recent Mechanistic Insight. Stroke, 2022, 53, 1432-1437.	1.0	6
138	Increased migratory and homing abilities of neural and mesenchymal stem cell populations by transient cell modifications: Preclinical progress and clinical relevance. EBioMedicine, 2020, 60, 103022.	2.7	5
139	How to Establish the Outer Limits of Reperfusion Therapy. Stroke, 2021, 52, 3399-3403.	1.0	5
140	Modelling hematological parameters after total body irradiation. International Journal of Radiation Biology, 2014, 90, 538-546.	1.0	3
141	Right Ventricular Function After Pulmonary Artery Banding: Adaptive Processes Assessed by CMR and Conductance Catheter Measurements in Sheep. Journal of Cardiovascular Translational Research, 2019, 12, 459-466.	1.1	3
142	Safety evaluation of intra-arterial cell delivery in stroke patients—a framework for future trials. Annals of Translational Medicine, 2019, 7, S271-S271.	0.7	3
143	Subacute AMD3100 Treatment Is Not Efficient in Neonatal Hypoxic-Ischemic Rats. Stroke, 2022, 53, 586-594.	1.0	3
144	High acceptance of an early dyslexia screening test involving genetic analyses in Germany. European Journal of Human Genetics, 2016, 24, 178-182.	1.4	2

#	Article	IF	CITATIONS
145	Dyslexia risk variant rs600753 is linked with dyslexia-specific differential allelic expression of DYX1C1. Genetics and Molecular Biology, 2018, 41, 41-49.	0.6	2
146	Editorial: Cell-based Therapies for Stroke: Promising Solution or Dead End?. Frontiers in Neurology, 2020, 11, 171.	1.1	2
147	Association of rs2069459 in the CDK5 gene with dyslexia in a German cohort. Psychiatric Genetics, 2012, 22, 307-308.	0.6	1
148	Optogenetics in Stem Cell Research: Focus on the Central Nervous System. Neuromethods, 2018, , 75-87.	0.2	1
149	Cerebral Blood Flow Measurement with Oxygen-15 Water Positron Emission Tomography. , 2014, , 103-124.		1
150	The Current State of Cell Therapies for Cerebrovascular Diseases. Stem Cells International, 2016, 2016, 1-2.	1.2	0
151	2019 Overview. CNS Neuroscience and Therapeutics, 2020, 26, 287-287.	1.9	0
152	Tracking of Autologous VSOP-Labeled Mesenchymal Stem Cells in the Sheep Brain Using 3.0 T MRI. , 2013, , 105-125.		0
153	Pharmacologically targeting inflammation and improving cerebrospinal fluid circulation improves outcome after subarachnoid haemorrhage. EBioMedicine, 2022, 77, 103937.	2.7	0