Patrice E Fort

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9075156/publications.pdf Version: 2024-02-01

DATRICE F FORT

#	Article	IF	CITATIONS
1	Role of Inflammation in Diabetic Retinopathy. International Journal of Molecular Sciences, 2018, 19, 942.	1.8	484
2	A role of melanin-concentrating hormone producing neurons in the central regulation of paradoxical sleep. BMC Neuroscience, 2003, 4, 19.	0.8	379
3	The rat ponto-medullary network responsible for paradoxical sleep onset and maintenance: a combined microinjection and functional neuroanatomical study. European Journal of Neuroscience, 2002, 16, 1959-1973.	1.2	302
4	New insights into the mechanisms of diabetic complications: role of lipids and lipid metabolism. Diabetologia, 2019, 62, 1539-1549.	2.9	240
5	Localization of the Brainstem GABAergic Neurons Controlling Paradoxical (REM) Sleep. PLoS ONE, 2009, 4, e4272.	1.1	207
6	Diabetes Reduces Basal Retinal Insulin Receptor Signaling: Reversal With Systemic and Local Insulin. Diabetes, 2006, 55, 1148-1156.	0.3	164
7	Evidence that Neurons of the Sublaterodorsal Tegmental Nucleus Triggering Paradoxical (REM) Sleep Are Glutamatergic. Sleep, 2011, 34, 419-423.	0.6	135
8	Targeted inactivation of dystrophin gene product Dp71: phenotypic impact in mouse retina. Human Molecular Genetics, 2003, 12, 1543-1554.	1.4	121
9	Genetic inactivation of glutamate neurons in the rat sublaterodorsal tegmental nucleus recapitulates REM sleep behaviour disorder. Brain, 2017, 140, 414-428.	3.7	118
10	Cholinergic and noncholinergic brainstem neurons expressing Fos after paradoxical (REM) sleep deprivation and recovery. European Journal of Neuroscience, 2005, 21, 2488-2504.	1.2	115
11	The supramammillary nucleus and the claustrum activate the cortex during REM sleep. Science Advances, 2015, 1, e1400177.	4.7	115
12	Heat Shock Proteins Regulatory Role in Neurodevelopment. Frontiers in Neuroscience, 2018, 12, 821.	1.4	114
13	Brainstem mechanisms of paradoxical (REM) sleep generation. Pflugers Archiv European Journal of Physiology, 2012, 463, 43-52.	1.3	107
14	Localization of the neurons active during paradoxical (REM) sleep and projecting to the locus coeruleus noradrenergic neurons in the rat. Journal of Comparative Neurology, 2006, 495, 573-586.	0.9	102
15	Kir4.1 and AQP4 associate with Dp71―and utrophinâ€DAPs complexes in specific and defined microdomains of Mù⁄4ller retinal glial cell membrane. Glia, 2008, 56, 597-610.	2.5	80
16	The Retinal Proteome in Experimental Diabetic Retinopathy. Molecular and Cellular Proteomics, 2009, 8, 767-779.	2.5	79
17	Increased lipogenesis and impaired β-oxidation predict type 2 diabetic kidney disease progression in American Indians. JCI Insight, 2019, 4, .	2.3	74
18	Approach for a Clinically Useful Comprehensive Classification of Vascular and Neural Aspects of Diabetic Retinal Disease. , 2018, 59, 519.		62

PATRICE E FORT

#	Article	IF	CITATIONS
19	Differential Roles of Hyperglycemia and Hypoinsulinemia in Diabetes Induced Retinal Cell Death: Evidence for Retinal Insulin Resistance. PLoS ONE, 2011, 6, e26498.	1.1	62
20	New focus on alpha-crystallins in retinal neurodegenerative diseases. Experimental Eye Research, 2011, 92, 98-103.	1.2	59
21	Diabetes Impairs the Neuroprotective Properties of Retinal Alpha-crystallins. , 2011, 52, 5034.		48
22	The innate immune system in diabetic retinopathy. Progress in Retinal and Eye Research, 2021, 84, 100940.	7.3	48
23	GABAergic control of hypothalamic melanin-concentrating hormone-containing neurons across the sleep???waking cycle. NeuroReport, 2005, 16, 1069-1073.	0.6	43
24	Regulated in Development and DNA Damage 1 Is Necessary for Hyperglycemia-induced Vascular Endothelial Growth Factor Expression in the Retina of Diabetic Rodents. Journal of Biological Chemistry, 2015, 290, 3865-3874.	1.6	43
25	Noradrenergic neurons expressing Fos during waking and paradoxical sleep deprivation in the rat. Journal of Chemical Neuroanatomy, 2009, 37, 149-157.	1.0	41
26	Pro-inflammatory cytokines downregulate Hsp27 and cause apoptosis of human retinal capillary endothelial cells. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2014, 1842, 164-174.	1.8	40
27	Selective activation of a few limbic structures during paradoxical (REM) sleep by the claustrum and the supramammillary nucleus: evidence and function. Current Opinion in Neurobiology, 2017, 44, 59-64.	2.0	39
28	Current knowledge on diabetic retinopathy from human donor tissues. World Journal of Diabetes, 2015, 6, 312.	1.3	32
29	Sleep–wake physiology. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2019, 160, 359-370.	1.0	32
30	Neuroprotection for Diabetic Retinopathy. Developments in Ophthalmology, 2009, 44, 56-68.	0.1	31
31	A specific phosphorylation regulates the protective role of αA-crystallin in diabetes. JCI Insight, 2018, 3,	2.3	30
32	Characterization and pharmacologic targeting of EZH2, a fetal retinal protein and epigenetic regulator, in human retinoblastoma. Laboratory Investigation, 2015, 95, 1278-1290.	1.7	26
33	Insulin-like growth factor 1 rescues R28 retinal neurons from apoptotic death through ERK-mediated BimEL phosphorylation independent of Akt. Experimental Eye Research, 2016, 151, 82-95.	1.2	25
34	mTORC1-Independent Reduction of Retinal Protein Synthesis in Type 1 Diabetes. Diabetes, 2014, 63, 3077-3090.	0.3	24
35	Phosphatase control of 4E-BP1 phosphorylation state is central for glycolytic regulation of retinal protein synthesis. American Journal of Physiology - Endocrinology and Metabolism, 2015, 309, E546-E556.	1.8	22
36	Diminished retinal complex lipid synthesis and impaired fatty acid β-oxidation associated with human diabetic retinopathy. JCl Insight, 2021, 6, .	2.3	20

PATRICE E FORT

#	Article	IF	CITATIONS
37	Neuroanatomical and Neurochemical Bases of Vigilance States. Handbook of Experimental Pharmacology, 2018, 253, 35-58.	0.9	19
38	Crystallins and neuroinflammation: The glial side of the story. Biochimica Et Biophysica Acta - General Subjects, 2016, 1860, 278-286.	1.1	17
39	The sarcoglycan–sarcospan complex localization in mouse retina is independent from dystrophins. Neuroscience Research, 2005, 53, 25-33.	1.0	16
40	Impact of diabetes on alpha-crystallins and other heat shock proteins in the eye. Journal of Ocular Biology, Diseases, and Informatics, 2011, 4, 62-69.	0.2	14
41	Differential origin of the activation of dorsal and ventral dentate gyrus granule cells during paradoxical (REM) sleep in the rat. Brain Structure and Function, 2017, 222, 1495-1507.	1.2	14
42	Is REM sleep a paradoxical state?: Different neurons are activated in the cingulate cortices and the claustrum during wakefulness and paradoxical sleep hypersomnia. Biochemical Pharmacology, 2021, 191, 114514.	2.0	14
43	Diabetic Retinopathy—Update on Prevention Techniques, Present Therapies, and New Leads. US Ophthalmic Review, 2014, 07, 54.	0.2	14
44	Strain-Independent Increases of Crystallin Proteins in the Retina of Type 1 Diabetic Rats. PLoS ONE, 2013, 8, e82520.	1.1	13
45	mTORC1 and mTORC2 expression in inner retinal neurons and glial cells. Experimental Eye Research, 2020, 197, 108131.	1.2	13
46	The Absence of Indoleamine 2,3-Dioxygenase Inhibits Retinal Capillary Degeneration in Diabetic Mice. , 2018, 59, 2042.		12
47	Lack of dystrophin protein Dp71 results in progressive cataract formation due to loss of fiber cell organization. Molecular Vision, 2014, 20, 1480-90.	1.1	12
48	HspB4/αA-Crystallin Modulates Neuroinflammation in the Retina via the Stress-Specific Inflammatory Pathways. Journal of Clinical Medicine, 2021, 10, 2384.	1.0	11
49	Phosphorylation Site Mapping of Endogenous Proteins: A Combined MS and Bioinformatics Approach. Journal of Proteome Research, 2009, 8, 798-807.	1.8	10
50	Therapeutic Potential of α-Crystallins in Retinal Neurodegenerative Diseases. Antioxidants, 2021, 10, 1001.	2.2	10
51	Molecular cloning and protein expression of Duchenne muscular dystrophy gene products in porcine retina. Neuromuscular Disorders, 2005, 15, 476-487.	0.3	9
52	Anti-fumarase antibody promotes the dropout of photoreceptor inner and outer segments in diabetic macular oedema. Diabetologia, 2019, 62, 504-516.	2.9	9
53	Slight Alteration of the Electroretinogram in Mice Lacking Dystrophin Dp71. Ophthalmic Research, 2014, 51, 196-203.	1.0	8
54	Targeted recombination in active populations as a new mouse genetic model to study sleepâ€active neuronal populations: Demonstration that Lhx6+ neurons in the ventral zona incerta are activated during paradoxical sleep hypersomnia. Journal of Sleep Research, 2020, 29, e12976.	1.7	8

PATRICE E FORT

#	Article	IF	CITATIONS
55	Loss of αA or αB-Crystallin Accelerates Photoreceptor Cell Death in a Mouse Model of P23H Autosomal Dominant Retinitis Pigmentosa. International Journal of Molecular Sciences, 2022, 23, 70.	1.8	6
56	BetaB2-crystallin mutations associated with cataract and glaucoma leads to mitochondrial alterations in lens epithelial cells and retinal neurons. Experimental Eye Research, 2017, 155, 85-90.	1.2	5
57	Insulin-like growth factor-2 regulates basal retinal insulin receptor activity. Journal of Biological Chemistry, 2021, 296, 100712.	1.6	5
58	Noninvasivein vivoimaging of embryonic β-cell development in the anterior chamber of the eye. Islets, 2016, 8, 35-47.	0.9	4
59	Granule cells in the infrapyramidal blade of the dentate gyrus are activated during paradoxical (REM) sleep hypersomnia but not during wakefulness: a study using TRAP mice. Sleep, 2021, 44, .	0.6	3
60	Evidence for Paracrine Protective Role of Exogenous αA-Crystallin in Retinal Ganglion Cells. ENeuro, 2022, 9, ENEURO.0045-22.2022.	0.9	3
61	A Triple Mutation of BetaB2-Crystallin is Necessary to Develop Cataract and Glaucoma. Journal of Clinical & Experimental Ophthalmology, 2017, 08, .	0.1	2
62	mTORC1 regulates high levels of protein synthesis in retinal ganglion cells of adult mice. Journal of Biological Chemistry, 2022, 298, 101944.	1.6	2
63	Insulin Signaling in Normal and Diabetic Conditions. , 2010, , 101-118.		1
64	Cataract development associated with long-term glucocorticoid therapy in Duchenne muscular dystrophy patients. Journal of AAPOS, 2018, 22, 483-484.	0.2	0
65	Neuroanatomical and Neurochemical Systems Involved in Paradoxical Sleep (PS) Generation. Handbook of Behavioral Neuroscience, 2019, 30, 239-248.	0.7	0
66	αA-Crystallin Mediated Neuroprotection in the Retinal Neurons Is Independent of Protein Kinase B. Frontiers in Neuroscience, 2022, 16, .	1.4	0