Eric Bertoft

List of Publications by Year in descending order

Source: //exaly.com/author-pdf/9074788/publications.pdf

Version: 2024-02-01

39 papers 3,661 citations

245449
24
h-index

37 g-index

40 all docs

40 docs citations

40 times ranked

3219 citing authors

#	Article	IF	CITATIONS
1	Relationship between molecular structure and lamellar and crystalline structure of rice starch. Carbohydrate Polymers, 2021, 258, 117616.	10.5	39
2	Amylopectin starch granule lamellar structure as deduced from unit chain length data. Food Hydrocolloids, 2020, 108, 106053.	10.9	31
3	Observations on the impact of amylopectin and amylose structure on the swelling of starch granules. Food Hydrocolloids, 2020, 103, 105663.	10.9	138
4	Impact of different structural types of amylopectin on retrogradation. Food Hydrocolloids, 2018, 80, 88-96.	10.9	134
5	Distinct Properties and Structures Among Bâ€Crystalline Starch Granules. Starch/Staerke, 2018, 70, 1700240.	2.2	14
6	Influence of diurnal photosynthetic activity on the morphology, structure, and thermal properties of normal and waxy barley starch. International Journal of Biological Macromolecules, 2017, 98, 188-200.	7.7	25
7	Effect of diurnal photosynthetic activity on the fine structure of amylopectin from normal and waxy barley starch. International Journal of Biological Macromolecules, 2017, 102, 924-932.	7.7	8
8	Understanding Starch Structure: Recent Progress. Agronomy, 2017, 7, 56.	3.1	515
9	Molecular and thermal characterization of starches isolated from African rice (O <i>ryza) Tj ETQq1 1 0.784314 rg</i>	gBT_/Overlo	ock 10 Tf 50 4
10	Unit and internal chain profile of African rice (Oryza glaberrima) amylopectin. Carbohydrate Polymers, 2016, 137, 466-472.	10.5	30
11	Structure of clusters and building blocks in amylopectin from African rice accessions. Carbohydrate Polymers, 2016, 148, 125-133.	10.5	5
12	Morphological, Thermal, and Rheological Properties of Starches from Maize Mutants Deficient in Starch Synthase III. Journal of Agricultural and Food Chemistry, 2016, 64, 6539-6545.	5.3	25
13	Impact of full range of amylose contents on the architecture of starch granules*. International Journal of Biological Macromolecules, 2016, 89, 305-318.	7.7	21
14	On the molecular structure of the amylopectin fraction isolated from "high-amylose―ae maize starches. International Journal of Biological Macromolecules, 2016, 91, 768-777.	7.7	23
15	Small differences in amylopectin fine structure may explain large functional differences of starch. Carbohydrate Polymers, 2016, 140, 113-121.	10.5	146
16	Internal structure of amylopectin from the pericarp tissue of developing wheat kernels. Starch/Staerke, 2015, 67, 1070-1076.	2.2	4
17	Structure of Arabidopsis leaf starch is markedly altered following nocturnal degradation. Carbohydrate Polymers, 2015, 117, 1002-1013.	10.5	11
18	Branching patterns in leaf starches from Arabidopsis mutants deficient in diverse starch synthases. Carbohydrate Research, 2015, 401, 96-108.	2.4	10

#	Article	IF	Citations
19	Structureâ€function relationships of starch components. Starch/Staerke, 2015, 67, 55-68.	2.2	339
20	Physical and Molecular Characterization of Millet Starches. Cereal Chemistry, 2014, 91, 286-292.	2.2	76
21	Molecular Structure and Organization of Starch Granules from Developing Wheat Endosperm. Cereal Chemistry, 2014, 91, 578-586.	2.2	17
22	Unit and Internal Chain Profile of Millet Amylopectin. Cereal Chemistry, 2014, 91, 29-34.	2.2	25
23	Evolution of amylopectin structure in developing wheat endosperm starch. Carbohydrate Polymers, 2014, 112, 316-324.	10.5	23
24	Structure of clusters and building blocks in amylopectin from developing wheat endosperm. Carbohydrate Polymers, 2014, 112, 325-333.	10.5	16
25	On the importance of organization of glucan chains on thermal properties of starch. Carbohydrate Polymers, 2013, 92, 1653-1659.	10.5	127
26	Building block organisation of clusters in amylopectin from different structural types. International Journal of Biological Macromolecules, 2012, 50, 1212-1223.	7.7	92
27	Structure of building blocks in amylopectins. Carbohydrate Research, 2012, 361, 105-113.	2.4	42
28	The cluster structure of barley amylopectins of different genetic backgrounds. International Journal of Biological Macromolecules, 2011, 49, 441-453.	7.7	44
29	The building block structure of barley amylopectin. International Journal of Biological Macromolecules, 2011, 49, 900-909.	7.7	27
30	Rheological properties of starches from grain amaranth and their relationship to starch structure. Starch/Staerke, 2010, 62, 302-308.	2.2	55
31	The molecular structures of starch components and their contribution to the architecture of starch granules: A comprehensive review. Starch/Staerke, 2010, 62, 389-420.	2.2	1,142
32	The fine structure of cassava starch amylopectin. International Journal of Biological Macromolecules, 2010, 47, 317-324.	7.7	57
33	The fine structure of cassava starch amylopectin. Part 2: Building block structure of clusters. International Journal of Biological Macromolecules, 2010, 47, 325-335.	7.7	43
34	Fine structure characterization of amylopectins from grain amaranth starch. Carbohydrate Research, 2009, 344, 1701-1708.	2.4	67
35	A Study of the Internal Structure in Cassava and Rice Amylopectin. Starch/Staerke, 2009, 61, 557-569.	2.2	26
36	Internal unit chain composition in amylopectins. Carbohydrate Polymers, 2008, 74, 527-543.	10.5	197

ERIC BERTOFT

#	Article	IF	CITATION
37	Structural and thermodynamic properties of rice starches with different genetic background. International Journal of Biological Macromolecules, 2007, 41, 391-403.	7.7	55
38	On the architecture of starch granules revealed by iodine vapor binding and lintnerization. Part 1: Microscopic examinations. Biopolymers, $0, , .$	2.6	0
39	Perspectives on Starch Structure, Function, and Synthesis in Relation to the Backbone Model of Amylopectin. Biomacromolecules, 0, , .	5.6	0